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Abstract: Value-at-Risk (VaR) has been widely promoted by the Bank for International 

Settlement (BIS) as well as central banks of all countries as a way of monitoring and 

managing market risk and as a basis for setting regulatory minimum capital standards. 

The revised Basle Accord, implemented in January 1998, makes it mandatory for banks 

to use VaR as a basis for determining the amount of regulatory capital adequate for 

covering market risk. Foreign exchange forms a major part of banks’ holding and hence 

are subject to risk. We have adopted three categories of VaR methods, viz., Variance-

Covariance (Normal) methods including Risk-Metric, Historical Simulation (HS) and 

Tail-Index Based approach. We have used the daily exchange rate data from March 1, 

1993 to October 8, 2003 for our analysis.  Empirical results show that most of the models 

are failing in 1 500 rolling window while the full sample data is over estimating the VaR.  
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Value at Risk: Issues and implementation in Forex Market in India 
 

1. Introduction 
 
Value at Risk (VaR) models plays a core role in the risk management of today’s financial 

institutions. A VaR model measures market risk by determining how much the value of 

a portfolio could decline over a given period of time with a given probability due to the 

change in the market price of an asset. A number of VaR models are used with all 

having the same aim to measure the size of potential future losses at a given confidence 

level. The way the losses are estimated can vary. Models differ in fact in the way they 

calculate the density function of future profits and losses of current positions, as well as 

the assumptions they rely on. The VaR analysis originated with the variance-covariance 

model introduced by JP Morgan, RiskMetrics (1993). The variance-covariance approach 

to calculate risk can be traced back to the early days of modern portfolio theory of 

Markowitz (1959), upon which most today risk managers have been educated. This is 

why this type of VaR models have had a lot of appeal in the early days.   

 

The two most important components of VaR models are the length of time over which 

market risk is to be measured and the confidence level at which the market risk is 

measured. These choices affect the nature of VaR models. Financial institutions are 

subject to different types of risk, such as, business risk, strategic risk, financial risk and 

financial risk is one that is caused by movements in financial markets (van den 

Goorbergh, 1999). The literature distinguishes four major categories of financial risk, 

viz., credit risk, operational risk, liquidity risk and market risk. Credit risk generally 

relates to the potential loss due to the default on the part of the counterparty to meet its 

obligations at designated time. It has three basic components: credit exposure, 

probability of default and loss in the event of default. Operational risk takes into account 

the errors that can be made in instructing payments or settling transactions, and 

includes the risk of fraud and regulatory risks. Liquidity risk is caused by an unexpected 

large and stressful negative cash flow over a short period. If a firm has highly illiquid 

assets and suddenly needs some liquidity, it may be compelled to sell some of its assets 

at a discount. Finally, market risk estimates the loss of an investment portfolio due to the 

changes in prices of financial assets and liabilities (market conditions).  



 

Monitoring market risk assumes importance to banks and financial institutions, as the 

values of investment portfolios they hold undergo changes as and when market 

conditions change. Measuring market risk is important from the viewpoint of devising 

risk management strategy and for assessing total financial risk (which includes all 

different types of risks) of an investment portfolio held by a bank or financial institution.  

There is a need to provide capital charge for this category of risk also so that the 

banks/institutions remain in business in adverse market conditions. Recognizing this 

point the Bank for International Settlements (BIS) has included market risk as a part of 

the total risk for which capital has to be provided by a bank1.   

 

In recent years, Value at Risk (VaR) has become the standard measure that financial 

analysts use to quantify the market risk. VaR is commonly defined as the maximum 

potential fall in value of a portfolio (i.e. loss in portfolio) of financial instruments with a 

given probability over a certain horizon. In simpler words, it is a number that indicates 

how much a financial institution can lose with probability, say p, over a given time 

horizon. The great popularity that this instrument has achieved among financial 

practitioners is essentially due to its conceptual simplicity: VaR reduces the (market) risk 

associated with any portfolio to just one number that is the loss associated with a given 

probability and horizon. 

 

VaR measures can have many applications. It evaluates the performance of risk takers 

and satisfies the regulatory requirements. VaR has become an indispensable tool for 

monitoring risk and an integral part of methodologies that allocate capital to various 

lines of business. Today regulators all over the globe have been forcing institutions to 

adopt internal models and calculate the required capital charge based on VaR 

methodologies. In particular, the Basel Committee on Banking Supervision (1996) of the 

BIS imposes requirements on banks to meet capital requirements based on the VaR 

estimated through internal model approach.  Under this approach, regulators do not 

provide any specific VaR measurement technique to their supervised banks – the banks 
                                                 
1 Amendment to the Capital Accord to incorporate Market Risk, BIS document, Basel Committee on 
Banking Supervision, January 1996. 



are free to use their own model. But to eliminate the possible inertia of supervised banks 

to underestimate VaR so as to reduce the capital requirements, BIS has prescribed 

certain minimum standard of VaR estimates and also certain tests, such as backtesting, 

of VaR models. If VaR model of a bank fails in backtesting, a penalty is imposed 

resulting to higher capital charge.  

 

Thus, providing accurate estimates of VaR is of crucial importance for all stakeholders. If 

the underlying risk is not properly estimated, this may lead to a sub-optimal capital 

allocation with consequences on the profitability or the financial stability of the 

institutions. A bank would like to pick up a model that would generate as low VaR as 

possible but pass through the backtesting. 

 

Statistical models however impose strong assumptions about the underlying data. For 

example, the density function of daily returns follows a theoretical distribution (usually 

normal) and have constant means and variances. The empirical evidence about the 

distributional properties of speculative price changes provides evidence against these 

assumptions, Kendall M (1953), Mandelbrot (1963). Risk managers have also seen their 

daily portfolios profits and mainly losses to be much larger to those predicted by the 

normal distribution. The RiskMetrics VaR method has two additional major limitations. 

It linearises derivative positions and it does not take into account expiring contracts. 

These shortcomings may result in large biases, particular for longer VaR horizons and/or 

portfolios overweighed with short out-of-the money options.  

 

Risk managers have begun to look at simulation techniques to overcome the limitations 

of the variance-covariance approach. Simulation is used to generate pathways or 

scenarios for linear positions, interest rate factors, FX rates, etc and then value all 

positions at each scenario. The VaR is therefore calculated from the density function of 

the simulated portfolio values. The use of Monte-Carlo simulation is widely spread 

between the financial institutions around the globe. This method also is not lacking of 

severe criticisms. Firstly, the generation of the scenarios is based on random numbers 

drawn from a theoretical distribution, often normal, which does not always conforms with 



the empirical distribution of the data. Furthermore, to maintain the multivariate properties 

of the risk factors when generating scenarios, historical correlations are used. During 

market crises, when most correlations tend to increase instantly, a Monte Carlo system is 

likely to underestimate the possible losses. 

 

Recognising the fact that most asset returns cannot be described by a theoretical 

distribution, an increasing number of financial institutions are using historical 

simulation. Here, each historical observation forms a possible scenario. A number of 

scenarios is generated and in each of them all current positions are priced. The resulting 

portfolio distribution is more realistic since it is based on the empirical distribution of 

risk factors. This method has still some serious setbacks. The historical returns that are 

used as random numbers are not i.i.d. Thus the produced VaR value will be biased. 

During high volatile market conditions the historical simulation will underestimate risk. 

Furthermore, historical simulation uses constant implied volatility to price the options 

under each scenario. Some positions that may be appear well-hedged under the constant 

implied volatility hypothesis, may become very risky under a more realistic scenario. 

 

From a statistical point of view, VaR estimation entails the estimation of a quantile of the 

distribution of returns. Though, there has been voluminous work done on VaR in 

financial market all over the world, the task of estimating/forecasting VaR still remains 

challenging. The major difficulty lies in modelling/approximating the return 

distribution, which generally is not normal (being skewed and/or having fatter tails 

than normal distribution due to asymmetry, volatility clustering, etc.). Available VaR 

models can be classified into four broad categories: the historical simulation method, the 

Monte Carlo simulation method, modelling return distribution (including the 

variance/covariance method, which assumes normality of the return distribution, and 

methods under Extreme Value Theory (EVT). All these VaR estimation methods adopt 

the classical approach: they deal with the statistical distribution of time series of returns. 

 
The objective of the paper is to look at foreign exchange market in India and study 

various VaR methods using the Rupee-Dollar exchange rate data to understand which 

method is best suited for Indian system. The paper has been designed as follows: Section 



2 presents a brief review of literature on the subject, Section 3 discusses the theoretical 

and methodological issues concerning VaR, Section 4 focuses on data and construction 

of portfolio, Section 5 discusses empirical results and Section 6 concludes. 

 
 
2. Literature Review: 
 
The BIS (1996) document states (pg 45) that each bank must meet, on a daily basis, a 

capital requirement expressed as the higher of (i) its previous day’s VaR number 

measured according to the parameters specified and (ii) an average of the daily VaR 

measures on each of the preceding sixty business days, multiplied by a multiplication 

factor. The multiplication factor will be set by the individual supervisory authorities on 

the basis of their assessment of the quality of the bank’s risk management system, 

subject to an absolute minimum of 3. Banks are required to add to this factor a plus 

directly related to the ex-post performance of the model, thereby introducing a built-n 

positive incentive to maintain the predictive quality of the model. In India RBI has 

indicated this number to be 3.3 in its circular to primary dealers. The RBI instruction has 

been exactly in line with the primary BIS document.  

 

Lopez (1996) and Best (1999) and Jorion (2001) nterpreted the BIS guidelines on market 

risk through the equation: 
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where Smt and SRmt are a multiplication factor and an additional capital charge for the 

portfolio's idiosyncratic credit risk, respectively. Note that, under the current framework, 

Smt > 3.  
 

Khindanova and Rachev (1998) interpreted the BIS guidelines on market risk through 

the equation:  
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where Ct is the market risk capital requirement and At is the multiplication factor 

between 3 and 4, St is the capital charge for specific risk. 



 
Both these equations have different connotations. In case of Indian forex market, we 

never had a case in 2721 data points considered for this study where VaR of previous 

day is greater than multiplication factor (3.3) multiplied by last 60-days average VaR 

hence we have used the equation suggested by Khindonova and Rachev (1998) for 

estimation of VaR numbers which have over estimated the VaR numbers wherever, the 

previous day’s VaR has exceeded the last 60-days average VaR number.  

 

There has been large volume of literature on VaR methodologies as well as on its 

implementation. The concept received tremendous response from banks all over the 

world. Banks management can apply the VaR concept to set capital requirements 

because VaR models allow for an estimate of capital loss due to market risk (see 

Hendricks, 1996; Lopez, 1996; Duffie and Pan, 1997; Jackson, Maude and Perraudin, 

1997; Jorion, 1997; Saunders, 1999; Friedmann and Sanddrof-Kohle, 2000; Hartmann-

Wendels, et al., 2000; Simons, 2000, among others).  

 
The computation of volatility is the most important aspect of any VaR estimation. The 

volatility estimation should take care of the most stylized facts of any financial asset 

class – the important ones being fat tailed property, volatility clustering and asymmetry 

of return distribution. Once these issues are identified in the distribution, then 

calculating volatility is easy. Today GARCH family models have been increasingly used 

by researchers to model volatility. An important documentation in this regard has been 

the J P Morgan’s RiskMetrics that applied declining weights to past returns to compute 

volatility with a decay factor 0.94 which is a variant of IGARCH. Other measures of 

volatility, which differs from the estimation of return variance, include Garman and 

Klass (1980), and Gallant and Tauchen (1998), who incorporate daily high and low 

quotes, and Andersen and Bollerslev (1998) and Andersen, et al. (1999), who use average 

intraday squared returns to estimate daily volatility. 

 

Several studies such as Danielsson and de Vries (1997), Christoffersen (1998), and Engle 

and Manganelli (1999) have found significant improvements possible when deviations 

from the relatively rigid RiskMetrics framework are explored.  Choosing an appropriate 



VaR measure is an important and difficult task, and risk managers have coined the term 

Model Risk to cover the hazards from working with potentially mis-specified models. 

Beder (1995), for example, compares simulation-based and parametric models on fixed 

income and stock option portfolios and finds apparently economically large differences 

in the VaRs from different models applied to the same portfolio. Hendricks (1996) finds 

similar results analyzing foreign exchange portfolios. In Indian context, Darbha (2001) 

made a comparative study of three models – Normal, HS and Extreme Value Theory 

while studying the portfolio of Gilts held by PDs.  Sarma, Thomas and Shah (2003) have 

studied the VaR model selection  in Indian context using the stock market data and came 

up with a loss function based on opportunity cost of capital in case a bank is to have 

more capital charge if the model is over estimating VaR numbers. However, a bank has 

its capital sunk in various assets and it is not holding idea cash or setting aside a specific 

sum of money to meet the capital requirement and hence assigning an opportunity cost 

would not be justified. The capital which has been used by the bank to create various 

assets have been earning returns for the bank. It may be the case that a bank has 

invested in more liquid assets like gilts to take care of its loss scenarios in case 

liquidation is warranted.    

 
 
3. Theoretical Issues 
 
As stated earlier, VaR is the maximum amount of money that may be lost on a portfolio 

over a given period of time, with a given level of confidence and typically calculated for 

a one-day time horizon with 95% or 99% confidence level. Holding period is one of the 

most key elements in VaR estimation and the same is chosen on the basis of time that an 

organization would take to liquidate its position if the need arises. In a very liquid 

market, 1-day may holding period seem to be justified while in an illiquid market; it 

may take more than 10 days to liquidate the portfolio. Hence the capital charge would 

be different for different holding period.  

 

BIS requires that VaR be computed daily by Banks, using a 99th percentile, one-tailed 

confidence interval with a minimum price shock equivalent to ten trading days (holding 

period) and the model incorporate a historical observation period of at least one year. 



The capital charge for a bank that uses a proprietary model will be higher of (i) The 

previous day’s VaR and (ii) an average of the daily VaR of the preceding sixty business 

days, multiplied by a multiplication factor. The multiplication factor may be 3 and this 

may go up if the regulators feel that 3 is not sufficient to account for potential 

weaknesses in the modeling process. 

 
In the case of PDs, RBI prescribes all these above criteria except that (i) minimum 

holding period would be thirty trading days; (ii) the minimum length of the historical 

observation period used for calculating VaR should be one year or 250 trading days. For 

PDs who use a weighting scheme or other methods for the historical observation period, 

the "effective" observation period must be at least one year (that is, the weighted average 

time lag of the individual observations cannot be less than 6 months); and (iii) the 

multiplication factor is presently fixed at 3.3. 

 
The weaknesses may be due to (a) market prices often display patterns (heteroskedastic) 

that differs from the statistical simplifications used in modeling, (b) past not being 

always a good approximation of the future (October 1987 crash happened that did not 

have parallel in historical data), (c) most of the models take ex-post volatility and not ex-

ante, (d) VaR estimations normally is based on end-of-day positions and not take into 

account intra-day risk, (e) models can not adequately capture event risk arising from 

exceptional market circumstances. Since VaR heavily relies on the availability of 

historical market price data on the portfolio to understand its effectiveness, it would be 

appropriate to use the long historical data to see if the stress conditions can be 

replicated.  

 
 

3.1. Basic Statistics Related to VaR 
 

VaR models are characterized by their forecasted distributions of k-period-ahead 

portfolio returns. To fix notation, let y denote the log of portfolio value at time t. The k-

period-ahead  portfolio return is �t+k = y t+k – yt, .Conditional on the information available 

at time t, � t+k is a  random variable with distribution f t+k  that is � t+k |�t ~ f t+k. Thus, VaR 

model m is characterized by fmt+k , its forecast of ft+k  VaR estimates are the most common 



type of forecast generated from VaR models. A VaR estimate is simply a specified 

quantile of the forecasted return distribution over a given holding period. The VaR 

estimate at time t derived from model m for a k-period-ahead return, denoted VaR (k,�), 

is the critical value that corresponds to the lower � percent tail of fmt+k. 

 
The portfolio consists of many securities and in our case we are concerned with only 

foreign exchange rate (Rupee – US Dollar rate). The basic price equation of the portfolio 

can be written as follows: 
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and the return on the portfolio is at time defined as  
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where the sum is taken over n securities in the portfolio, wi denotes the proportionate 

value of the holding of security i at the end of day t. 

 
And the variance of the portfolio should be written as  
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where �ij,t+1 is the covariance and �ij,t+1 is the correlation between security i and j on day 

t+1 and for �ij,t+1 = 1 and we write �ij,t+1 = �2i,t+1 for all i. 

 
The VaR of the portfolio is simply 

1
p1tF,P1tPF,

p F*σVaR �

�
� �        (4) 

 
where Fp-1 is the p’th quantile of the rescaled portfolio returns. 

 
When we use HS method, we write the VaR equation as  
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3.2. Select VaR Methodologies 

 
There are few VaR methodologies that are very simple and easy to implement, to name a 

few are (a) Normal (parametric using variance and covariance approach) and (b) 

Historical simulation. Cleverly these simple methods have been extended with 

application of weights – recent events are given more weight and past is given less. 



However, different people have used different weighting methodologies. Riskmetrics 

has used ‘exponentially moving average’ where the decay factor (�) has been considered 

as 0.94 while Boudoukh, et al. (1997) fixed it at 0.98. We will discuss all these issues 

shortly and calculate the VaR number and see how they are comparable. 

 
There are also complex methods like EVT and Expected Shortfalls that require higher 

computing skills but not difficult to implement. EVT has two lines of thought – (a) 

simpler being the block maxima/minima and generalized extreme value in a Pareto 

optimality framework and (b) the Hill estimator and modeling both sides of the tail 

separately.  

 
3.3. Variance-Covariance (Normal) Method 

 
The Variance-Covariance (Normal) method is the easiest of the VaR methodologies. For 

foex portfolio, the plain standard deviation would be useful to calculate the require VaR. 

But whether to take static variance of the entire time series or conditional variance is a 

point for debate. It is argued that variance changes over time horizons and hence we 

should not rely on unconditional variance for measuring VaR. We will look at both the 

options.  

 
The normal method assumes normality in the financial time series. In recent past interest 

in econometrics and empirical finance has revolved around modeling the temporal 

variation in financial market volatility. Probability distributions for asset returns often 

exhibit fatter tails than the standard normal, or Gaussian, distribution. The fat tail 

phenomenon is known as excess kurtosis. Time series that exhibit a fat tail distribution 

are often commonly referred to as leptokurtic. In addition, financial time series usually 

exhibit a characteristic known as volatility clustering, in which large changes tend to 

follow large changes, and small changes tend to follow small changes. In either case, the 

changes from one period to the next are typically of unpredictable sign. Large 

disturbances, positive or negative, become part of the information set used to construct 

the variance forecast of the next period's disturbance. In this manner, large shocks of 

either sign are allowed to persist, and can influence the volatility forecasts for several 



periods. Volatility clustering, or persistence, suggests a time-series model in which 

successive disturbances are serially correlated.  

 
The volatility-clustering phenomenon can be captured through modelling conditional 

heteroscadasticity, assuming normality of the conditional distribution of return. A useful 

class of such time series model includes ARCH/GARCH or some of their further 

generalisation. This class of models not only handle volatility clustering but also 

accounts to a great extent the fat tail effect (or excess kurtosis) typically observed in 

financial data. The popular Risk-Metric model (J.P.Morgan, 1996) is a simplified form of 

heteroskedasticity. The Risk-Metric approach actually model conditional variance as a 

weighted average of past variance and past returns, where exponential weighting 

scheme for past returns is used as follows.  
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where 2
tσ and rt denote conditional variance and return at time t, respectively; and the 

parameter �, known as decay factor, satisfy 0 < � <1. 

 

For daily data, the value of the decay parameter in the RiskMetric approach is generally 

fixed at �=0.94 (van den Goorberg and Vlaar, 1999).  

 

3.4. Historical Simulation Method 

 

Historical simulation approach provides some advantages over the normal method, as it 

is not model based, although it is a statistical measure of potential loss. The main benefit 

is that it can cope with all portfolios that are either linear or non-linear. The method does 

not assume any specific form of the distribution of price change/return. The method 

captures the characteristics of the price change distribution of the portfolio, as VaR is 

estimated on the basis of actual distribution. This is very important, as the HS method 

would be on the basis of available past data. If the past data does not contain highly 

volatile periods, then HS method would not be able to capture the same. Hence, HS 

should be applied when we have very large data points that are sufficiently large to take 



into account all possible cyclical events. HS method takes a portfolio at a point of time 

and then revalues the same using the historical price series. Once we calculate the daily 

returns of the price series, then sorting the same in an ascending order and find out the 

required data point at desired percentiles. Linear interpolation can be used if the 

required percentile falls in between 2 data points. The moot question is what length of 

price series should be used to compute VaR using HS method and what we should do if 

the price history is not available. It has to be kept in mind that HS method does not 

allow for time-varying volatility. 

 

Another variant of HS method is a hybrid approach put forward by Boudhoukh, et al. 

(1997), that takes into account the exponential declining weights as well as HS by 

extimating the percentiles of the return directly, using declining weights on past data. 

As described by Boudhoukh et al. (1997, pp. 3),  “the approach starts with ordering the 

returns over the observation period just like the HS approach. While the HS approach 

attributes equal weights to each observation in building the conditional empirical 

distribution, the hybrid approach attributes exponentially declining weights to historical 

returns”. The process is simplified as follows: 

� Calculate the return series of past price data of the security or the portfolio 

from t-1 to t.  

� To each most recent K returns: R(t), R(t-1), ……R(t-K+1) assign a weight 
1kkkk λ)]λ/(1λ)λ,.....[(1)]λ/(1λ)[(1)],λ/(1λ)[(1 �

������  respectively. The 

constant )]λ/(1λ)[(1 k��  simply ensures that the weights sum to 1. 

� Sort the returns in ascending order. 

� In order to obtain p% VaR of the portfolio, start from the lowest return and 

keep accumulating the weights until p% is reached. Linear interpolation may 

be used to achieve exactly p% of the distribution.  

� In many studies lambda (�) has been used as 0.98. 

 

 

3.5. Extreme Value Theory – Hill’s Estimator and VaR Estimation 

 



In financial literature, it is widely believed that high frequency return has fatter tails 

than can be explained by the normal distribution. The tail-index measures the amount of 

tail fatness of return distribution and fit within the extreme value theory (EVT). One can 

therefore, estimate the tail-index and measure VaR based on that. The basic premises of 

this idea stems from the result that the tails of every fat-tailed distribution converge to 

the tails of Pareto distribution. The upper tail of such a distribution can be modeled as, 

 

Prob[X > x] ≈ Cα |x|–α    (i.e. Prob[X � x] ≈ 1 - Cα |x|-α);   x > C                                ….. (6)                                    

 

Where, C is a threshold above which the Pareto law holds; |x| denotes the absolute 

value of x and the parameter � is the tail-index.  

 

Similarly, lower tail of a fat-tailed distribution can be modeled as 

 

Prob[X > x] ≈1 - Cα |x| –α    (i.e. Prob[X � x] ≈ Cα |x| -α);   x < C                               ….. (7)   

Where, C is a threshold below which the Pareto law holds; |x| denotes the absolute 

value of x and the parameter � is the tail-index.  

      

In practice, observations in upper tail of the return distribution are generally positive 

and those in lower tail are negative. Thus, both of equation (6) and equation (7) have 

importance in VaR measurement. The holder of a short financial position suffers a loss 

when return is positive and therefore, concentrates on upper-tail of return 

distribution(i.e. equation 6) while calculating his VaR (Tsay, 2002, pp. 258). Similarly, the 

holder of a long financial position would model the lower-tail of return distribution (i.e. 

use equation 7) as a negative return makes him suffer a loss.   

 

From equation (6) and (7), it is clear that the estimation of VaR is crucially dependent on 

the estimation of tail-index �. There are several methods of estimating tail-index and in 

the present paper, we consider two approaches, viz. (i) Hill’s (1975) estimator and (ii) the 

estimator under ordinary least square (OLS) framework suggested by van den 



Goorbergh (1999). We consider here the widely used Hill’s estimator, a discussion on 

which is given below. 

 

3.5.1Hill’s Estimator 

 

For given threshold C in right-tail, Hill (1975) introduced a maximum likelihood 

estimator of γ = 1/α as 
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where Xi’s, i=1,2, …..,n are n observations (exceeding C) from the right-tail of the 

distribution.  

 

In practice, however, C is unknown and needs to be estimated. If sample observations 

come from Pareto distribution, then C would be estimated by the minimum observed 

value, the minimum order statistic. However, here we are not modeling complete 

portion of Pareto distribution. We are only dealing with a fat-tailed distribution that has 

right tail that is approximated by the tail of a Pareto distribution. As a consequence, one 

has to select a threshold level, say C, above which the Pareto law holds. In practice, 

equation (8) is evaluated based on order statistics in the right-tail and thus, the selection 

of the order statistics truncation number assumes importance. In other words, one needs 

to select the number of extreme observations n to operationalise equation (8). Mills 

(1999, pp. 186) discusses a number of available strategies for selecting n and a useful 

technique for the purpose is due to Phillips, et al. (1996). This approach makes an 

optimal choice of n that minimises the MSE of the limiting distribution of �̂ . To 

implement this strategy, we need estimates of � for truncation numbers n1 = N� and 

n2=N�, where 0 < � < 2/3 < 	 < 1. Let j�̂ be the estimate of � for n =nj, j=1,2. Then the 

optimal choice for truncation number is n = [� T2/3], where � is estimated as 

3/2
2121 |)ˆˆ)(/)(2/ˆ(|ˆ ���� �� nT . Phillips et al. (1996) recommended setting � =0.6 and 	 

= 0.9 (see Mills, 1999, pp. 186).   

 

3.5.1 Estimating VaR Using Hill’s Estimator 



 

Once tail-index α is estimated, the VaR can be estimated as follows (van den Goorbergh 

and Vlaar, 1999). Let p and q (p < q) be two tail probabilities and xp and xq are 

corresponding quantiles. Then p ≈ Cα (xp)-α and q ≈ Cα (xp)-α indicating that xp ≈ xq 

(q/p)1/α. Assuming that the threshold in the left-tail of the return distribution 

corresponds to the  m-th order statistics (in assending order), the estimate of xp be 
�̂

)(p np
mRx̂ ��

�

�
��
�

�
� m                                                                                                                 ….. (9) 

where R(m) is the m-th order statistics in the assending order of n observations chosen 

from tail of the underlying distribution; p is the given confidence level for which VaR is 

being estimated; �̂ is the estimate of γ. 

 

The estimate of VaR (with meanings of notations as defined above) would be 

p
t| 1tV̂

�
 = - Wt px̂ ; px̂ is estimate of quantile of return distribution                             ….(10)                                    

 

or 

p
t| 1tV̂

�
 = Wt [1 – exp( px̂ )]; px̂ is estimate of quantile of log-return distribution      ….(11)                                     

 

The methodology described above estimates tail-index and VaR for right tail of a 

distribution. To estimate the parameters for left tail, we simply multiply the observations 

by –1 and repeat the calculations.    

 

3.6. Estimating Multi-Period VaR from one-period VaR 

 

In practice above methods are used to estimate VaR numbers daily based on one-day 

holding period returns. However, for computing capital charge, we need the VaR 

numbers for longer holding period, say 10-days or 30-days. Using the estimates of 1-

period VaR, k-period VaR can be estimated by following approximation; 

 



VaR(k) 
 
� �

� ���

�
�

� �

ModelsVaRotherforVaR(1)k

αindextailthroughestimatedisVaR(1)ifVaR(1)kα

   …(12) 

 

3.7. Evaluation of VaR Models - Back Testing 

 

Any method used for VaR estimation need to satisfy the criteria of back testing using the 

current data set. Suppose we calculate the VaR numbers with probability level 0.01. We 

can check the accuracy of a VaR model by counting the number of times VaR estimate 

fails (i.e. actual loss exceeds estimated VaR), say in 100 days.  If we want to calculate 

VaR of a one-day holding period with 99% confidence level, logically, we are allowing 1 

failure in 100 days. But if the number is more than 1, then the model is under predicting 

VaR numbers and if we find less number of failures the model is over predicting. The 

Basle Committee provides guidelines for imposing penalty leading to higher 

multiplication factor, when the number of failure is too high. However, no penalty is 

imposed when the failure occurs with less frequency than the expected number. Thus, 

selection of VaR model is a very difficult task. A model, which overestimates VaR, may 

result in reduced number of failure but increase the required capital charge directly. On 

the other hand if a underestimates VaR numbers, the number failures may be too large 

which ultimately increases the multiplying factor and hence the required capital charge. 

Thus an ideal VaR model would be the one, which produces VaR estimates, as 

minimum as possible and also pass through the   backtesting. The BIS requires that 

models must incorporate past 250 days data points (one year assuming 

Saturday/Sundays being non-trading days). Accordingly the capital charge is the higher 

of (i) the previous day's value-at-risk number measured according to the above 

parameters specified in this section and (ii) the average of the daily value-at-risk 

measures on each of the preceding sixty business days, multiplied by a multiplication 

factor prescribed by RBI 3.30 presently for PDs). 

 

To do the back testing, we have used 2 loss functions: (i) an indicator variable I(t) which 

is one if negative return (loss) of the day is more than the VaR for the previous day and 

zero otherwise. Average of the indicator variable should be our VaR percent; (ii) another 



loss function where the difference between loss of day t and VaR of day t-1is squared 

and multiplied by the indicator variable I(t) described above. The higher losses are 

penalized for a bank. This will make us understand superiority of the model as a model 

that gives say lower value of the cumulative loss function would be preferred over the 

others. This is justified in the sense that a model that takes last 500 days of data for back 

testing should return 5 expected failures at 99% confidence level. But a model that 

shows only 1 failure but the failure is so huge that it wipes out the capital base because 

of higher loss intensity while another model may have more than 1 failure but such 

failures have a low intensity and their cumulative loss function is less than the other 

case.         

 

3.8. Loss function that addresses the magnitude of the exceptions 

 

However, it may so happen that a Bank might have incurred less number of times loss 

situations (left tail returns) but the intensity of loss is high that it eats up more capital in 

comparision to a bank which has faced the situation more number of times but the 

intensity is very low. Another way of handling the loss function is to assign some values 

when negative returns (losses) exceeds the daily VaR and loss function should be 

designed in such a way that it penalizes more for the intensity. This concern can readily 

be incorporated into a loss function by introducing a magnitude term. Although several 

are possible, a quadratic term is used here, such that 
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�

  …(13) 

 

Thus, as before, a score of one is imposed when an exception occurs, but now, an 

additional term based on the magnitude of the exception is included. The numerical score 

increases with the magnitude of the exception and can provide additional information on 

how the underlying VaR model forecasts the lower tail of the underlying ft+1 distribution. 

Unfortunately, the benchmark based on the expected value of Ct+1 cannot easily be 



determined because the fmt+1 distribution is unknown. However as discussed by 

Lopez(1998), simple, operational benchmarks based on certain distributional assumptions 

can be constructed. 

4. Data  

We have used the foreign exchange rates from 01-03-1993 (the date of starting of unified 

exchange rate system in India) for our analysis and all VaR numbers have been 

calculated for 08-10-2003. The foreign exchange rates have been collected from RBI and 

log returns have been calculated for the study. 

 

4.1 Data Characteristics 

The return series have spikes at various points in early part of the period under analysis. 

This can be seen in the Figure-1.  
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The descriptive statistics are given as: 
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Series: RTN
Sample 1 2721
Observations 2721

Mean     0.012651
Median  0.000000
Maximum  2.976490
Minimum -3.297790
Std. Dev.   0.285211
Skewness  -0.000153
Kurtosis   29.55248

Jarque-Bera  79933.24
Probability  0.000000

 
 



 
 
4.2. Empirical Results 
 
In this section we report our estimated VaR figures and corresponding capital charges. 

All calculations are restricted to left-tail (one tailed) of return distribution and 

probability level is fixed at 0.01 (equivalently confidence level of VaR estimates is set to 

0.99). Thus, the estimates we provide here actually refer to long-investment positions on 

portfolio containing forex. We have used a 500 days data-rolling window (for about 2 

years) for our analysis and back testing and all VaR number have been calculated for 

October 8, 2003.   

 
We first compute 1-day VaR numbers for all methods and as well as the average of 1-

day VaRs in last 60 days in our sample. All VaR estimates correspond to the probability 

level 0.01 (equivalently correspond to the confidence level 0.99). For a given 

security/portfolio, maximum of these two VaRs (i.e. 1-day VaR in last day and 60-day 

average of 1-day VaR) has been adjusted to arrive at VaR numbers corresponding to two 

alternative holding periods, viz., 10-days and 30-days.  For calculating capital charge 

corresponding to a holding period h, h=10-days or 30-days, the VaR with h-days 

holding period has been multiplied by the multiplication factor 3.3 (as given in the RBI 

circular for PDs). Relevant results are given in Table 1.  

 

An important issue need to be mentioned here is that all VaR estimates provided are in 

percentage form, and thus, may actually be termed as the relative VaR (Wong, et al., 

2003), which refers to the percentage of a portfolio value which may be lost after h-

holding period with a specified probability (i.e. the probability level of VaR). The 

absolute VaR (i.e. the VaR expressed in Rupees term) can easily be computed by 

multiplying the portfolio values with the estimated relative VaR. Similarly, the capital 

charge can also be represented in two alternative forms, viz., relative (i.e. in percentage) 

or absolute (i.e. in rupees terms). The additional information we require to convert a 

relative VaR/capital charge in a day to a corresponding absolute term (i.e. rupees term) 

figures is the value of the portfolio/security.  

 



Table 1: Estimated VaRs and Capital Charges  
Variance-Covariance 
 (Normal)  Method 

Historical 
Simulation 

Tail-Index 
(Hill’s Estimator) 

Simple 
(homoscadastic) 

Risk Metric with � 
(conditional heteroscadasctic) 

Portfolio Description of Estimate Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 

Fx Last day VaR 0.6772 0.2330 0.3426 0.4000 0.4417 0.9554 0.3195 0.9121 0. 2935 
 60-Day Avg 0.6796 0.2269 0.2672 0.2675 0.2617 0.9566 0.2626 0.9135 0.2606 

 Max (Last day, 60-Day Avg) 0.6796 0.2330 0.3426 0.4000 0.4417 0.9566 0.3195 0.9135 0.2935 

 10-Day Var (%) 2.1490 0.7369 1.0834 1.2648 1.3966 3.0250 1.0102 2.8887 0.9281 
 30-day Var (%) 3.7221 1.2764 1.8765 2.1907 2.4190 5.2394 1.7497 5.0034 1.6076 
 Cap Charge, H=10-day (%) 7.0915 2.4318 3.5752 4.1739 4.6089 9.9824 3.3337 9.5328 3.0628 
 Cap Charge, H=30-day (%) 12.283 4.2120 6.1925 7.2294 7.9828 17.2899 5.7741 16.5114 5.3050 
 
The columns in Table are self-explanatory. As can be seen therein, we estimated VaRs 

and capital charges for five alternative schemes under normal method, one for full 

sample estimate, one for rolling sample estimate, and three for Risk Metric approach 

corresponding to three alternative decay factors, � = 0.98, 0.96 and 0.94. Full sample 

estimates at any day, say t, are derived based on all returns from day 1 to t. In the case of 

rolling sample estimates, we fix the size/length of the rolling windows at 1584 days. The 

columns with titles ‘Full’ and ‘Rolling’ provide estimates corresponding to full sample 

and rolling sample, respectively. As regards to historical simulation, we provide both 

‘full sample’ and ‘rolling sample’ estimates. Same is the case for tail-index (Hill’s 

estimator) approach. 

4.3 Back Testing for Competing VaR Models  
 
For evaluating performance of competing VaR models, back testing has been carried out 

with the daily returns for last 290 days (covering about a period of one year as 

backtesting observations. Both ‘full sample’ and  ‘rolling sample’ estimates of VaRs are 

assessed. The backtesting strategy adopted for the case of rolling sample estimates, is as 

follows; estimate 1-day VaR using returns for days 1 to 2221 and compare the same with 

the return of the 2222-th day, estimate 1-day VaR based on returns on days 2 to 2222 and 

compare the same with 2223-th day’s return, and so on. In the case of full sample 

estimates, VaRs at any day, say t, are estimated based on returns for the days 1 to t.  

 
Table 3 gives the back testing results with failure. As we have used 500 data points for 
our analysis, the expected failures are 5 (with 99% confidence interval).  
 

Table 3: Results of Back Testing for Two Portfolios 



Variance-Covariance 
(Normal)  Method Historical Simulation 

Tail-Index 
(Hill’s Estimator) 

Simple (homoscadastic) 
Risk Metric with �              

(conditional heteroscadasctic) 
Fx Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 

 0 10 15 11 8 0 11 0 9 
Note: Number in each cell indicates the number of days (out of 250 backtesting days) when actual loss
exceeds the VaR (with probability level 0.01). For a good VaR model, this number would be close to 3.  
 
The loss function estimated is given in Table 4.  
 
Table 4: Loss Function Estimation 

Variance-Covariance 
(Normal)  Method Historical Simulation 

Simple (homoscadastic) 
Risk Metric with �              (conditional 

heteroscadasctic) 
Full Rolling 0.98 0.96 0.94 Full Rolling 

0 3.1254 4.4613 3.3555 2.9836 0 3.7943 
 
 
 
Conclusion: Value-at-Risk (VaR) has been widely promoted by the Bank for 

International Settlement (BIS) as well as central banks of all countries as a way of 

monitoring and managing market risk and as a basis for setting regulatory minimum 

capital standards This paper has experimented with a number of available VaR models, 

such as, variance-covariance/normal (including Risk-Metric approach), historical 

simulation and tail-index based method for estimating VaR for foreign exchange 

portfolio.  

  
Empirical results are quite interesting. We found that all the models have been failing in 

back test except when we take the whole period. When we use a rolling period of 500 

days, the models have underestimated the risk.  The full sample estimate over-estimate 

the risk as we did not find a single failure in back testing.   
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