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1. Introduction 
 
In recent years, the concept of Value at Risk (VaR) occupies the central role in 
managing market risk. Since the Basle Committee Report (1995, 1996) of the Banks for 
International Settlements (BIS), many central banks have made it mandatory to their 
supervised banks for quantifying market risk through VaR and to maintain minimum 
required capital for this quantified risk. However, no specific VaR model is 
recommended by regulators (BIS or central banks).  Supervised banks (henceforth 
simply banks) are free to use their own VaR models and the approach so prescribed by 
the regulators is called as ‘internal model approach’.   
 
From a bank’s point of view, choosing appropriate VaR model assumes importance as 
the required capital charge for market risk is linked to VaR estimates. Larger is the 
value of VaR estimate, higher is the amount of required capital. But banks generally 
do not want to have higher capital charge. It is argued (see for instance, Wong, et al. 
2003) that an increase in required capital increases the equity-asset ratio of bank. As 
equity tends to have higher required rate of returns than debt or other sources of 
capital, the average cost of capital for the bank will rise. This may result in low 
profitability of the bank in terms of return on equity. Thus, banks may have a 
tendency/preference towards a model that produces lower VaR. In this process, 
however, banks may be exposed to risk beyond their capacity and may be vulnerable 
to the shocks arising out market swings (i.e. due to market risk).  In order to eliminate 
such (excessive) risk-taking activities of banks, regulators provide certain norms (such 
as backtesting, data period and other factors for VaR estimations, etc.) to be satisfied 
by the VaR estimates.   
 
The selection of an appropriate VaR model in reality, however, is a difficult task and 
each bank faces a problem of choosing one amongst several available alternatives. A 
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simple guide to banks in this purpose would be to choose a model that produces as 
minimum VaR as possible and also satisfy the regulatory requirements/norms 
prescribed by the regulators/Basle Committee.  One important point here is that these 
regulatory requirements of VaR estimates actually focuses on the frequency of the 
events of loses above estimated VaR but does not consider the magnitudes of 
failures/excess-loses. In a real world, however, a bank may have its own objective 
function that need not always be same as (or consistent with) the regulatory norms. 
For example, a bank manager may prefer to accept a model that results in small 
additional loses (i.e. the loss in excess of estimated VaR) even if it shows poor 
performance in backtesting than a model, which passes through the backtesting but 
results in very high additional loses. This may particularly be so if it happens that the 
total additional loss in the former case is less than that in the later case. In other words, 
banks may prefer even a model that fails in backtesting but results in relatively less 
loss (after making adjustment for the higher multiplying factor for failing in back 
testing). Keeping these points in mind, some researchers have proposed to minimise 
certain loss functions while making a choice of a VaR model from various alternatives 
(Lopez, 1999; Sarma, et al., 2003).  
 
In India, about 58-68 percent (in percent of outstanding rupees) of GOI bonds are held 
by commercial banks in recent years (Nath and Samanta, 2003). Therefore, it is 
important for banks to select VaR models for managing the market risks in respect to 
GOI bonds in their portfolios. In this connection, Darba (2001) attempts to estimate 
VaRs for select portfolios of fixed income instruments held by ten Primary Dealers 
(PDs)1. He compares three methods of VaR estimation, namely, Normal method, 
Historical Simulation (HS) and Extreme Value Theory (EVT) and concludes that EVT 
produces best VaR estimator in terms of correct failure ratio and lowest VaR for the 
representative portfolios considered.  However, he himself points out that the results 
need to be checked over all PDs. In a recent study, Nath and Samanta (2003) have 
experimented with several alternative VaR models, such as, normal method (including 
Risk Metric), HS and Tail-Index based approach for two hypothetical portfolios of GOI 
bonds as well as selected 31 individual GOI bonds. They found that normal method 
generally underestimate VaR, leading to more frequent VaR violations in backtesting 
than other competing models. In both these studies, VaR models have been validated 
only through ‘backtesting’ criterion. As stated earlier, backtesting ignores magnitude 
of VaR violations. So, in real world, portfolio managers may have their own objective 
function that is different from that implied by the ‘backtesting’ (Lopez, 1998, 1999; 
Sarma, et al., 2003). In the present paper, we have demonstrated a framework for 
selecting appropriate VaR model for two representative portfolios of Government of 
India (GOI) fixed income securities. We also examine various VaR models for 31 
individual GOI bonds. This study is different from Darba (2001) and Nath and 
Samanta (2003) in that it focuses on a wider class of evaluation, criteria, viz.,                 
(i) backtesting, (ii) statistical tests of VaR accuracy (considering separately, 
unconditional coverage and conditional coverage), and also (iii) assessment using 
typical loss-functions, which a portfolio manager would like to minimise.  
 
The organisation of rest of the paper is as follows. In Section 2, we present a few 
available VaR estimation techniques. Section 3 discusses various criteria/objective 
functions for selecting/evaluating VaR model. The database on GOI bonds used in 

                                                 
1 Supplied by Primary Dealers Association. For the sake of confidentiality, however, Darba 
(2001) did not disclose any information on these ten portfolios. 
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this empirical study is discussed in Section 4. Section 5 presents the empirical results. 
Finally, Section 6 concludes the paper. 
 
2. Select VaR Models 
 
The VaR represents the maximum amount of money that may be lost on a portfolio 
over a given period of time, with a given level of confidence in probabilistic term.  
Holding period is one of the most key elements in VaR estimation and the same is 
chosen on the basis of time that an organization would take to liquidate its position if 
the need arises. In a very liquid market, 1-day holding period may seem to be justified 
while in an illiquid market; it may take even more than 10 days to liquidate the 
portfolio. The amount of capital charge for market risk is linked to VaR estimates and 
hence will be different for different holding periods.  
 
2.1. Direct Estimation of VaR 
 
The VaR for k-days holding period can be computed directly from k-days return series. 
The VaR for multi-days holding period can also be calculated/approximated indirectly 
from the estimated VaR for one-day holding period2.  We consider here the case of direct 
estimation of VaR for one-day holding period from daily return series.  
 
From statistical point of view, the problem of VaR estimation ultimately boils down to the 
estimation of quantile of return distribution. If the underlying distribution were normal 
one would simply estimate the required quantile with the help of quantiles of standard 
normal distribution (which are known to us) and estimated mean and variance of the 
return. Of course, one has to decide upon the type of distribution (i.e. whether conditional 
or unconditional/static) and the type of sample (i.e. whether full sample or rolling sample). 
But the biggest problem in estimating VaR has been the non-normality of return 
distribution due to leptokurtic and/or skewness problems. Though the normality 
assumption of conditional heteroscedasticity models, primarily used for modelling the 
phenomenon of volatility clustering, can partly handle with the leptokurtic behaviour of 
unconditional distribution of return, utility of such models in estimating VaR is seen not 
very impressive (Wong et al., 2003). Two alternative strategies exist to handle with non-
normal distribution. First, to adopt some non-parametric methods, say Historical 
Simulation (HS), to estimate the quantiles of return distribution. Second, one can fit 
appropriate form of parametric distribution, either fitting suitable non-normal distribution 
(say, by fitting t-distribution, suitable mixture distribution or so) for entire portion of the 
distribution or by modelling only the extreme-observations of the distribution under 
extreme value theory (which also includes tail-index based analysis).  
 
As in Nath and Samanta (2003) we consider eight competing VaR models; five under 
normal method (viz., full sample estimates, rolling sample estimates and Risk-Metric 
approach for three alternative decay factors), two under Historical Simulation, and 
two under tail-index based approach using Hill’s estimator (viz., full sample and 
rolling sample estimates).  A discussion on these models is presented below. 
 
 
 
 

                                                 
2 In practice, generally VaR with one-day holding period is calculated daily basis from daily return series 
and VaRs for multi-days holding period are calculated indirectly using the estimates of one-day VaRs.  
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2.1.1. Variance-Covariance (Normal) Method 
 

The Variance-Covariance (Normal) method is the easiest of the VaR methodologies, 
which assumes normality of return distribution, either conditional or unconditional. 
As normal distribution is characterized by first two moments (say, mean and 
variance), the main task involved in estimating VaR under normal method has been to 
estimate mean and standard deviation of return distribution.  But there may be several 
alternatives strategy in terms of modelling/estimating variance.  Particularly, whether 
to take static variance of the entire time series or conditional variance is a point for 
debate. Moreover, even if the debate is resolved, there would be several strategy for 
estimating required parameters. 
 
When we assume normality of unconditional distribution, mean/variance can be 
estimated either by using full sample data or a rolling sample data. To illustrate the 
issue, suppose we are estimating VaR for time point t. Now for the ‘full sample’ case, 
all estimates are obtained by using all data from time points 1 to t. In the case of rolling 
sample, however, one makes use of data for the time points (t-k+1) to t, where k is a 
positive integer representing the size of the rolling sample. In either case, if � and �2 
denote the mean and variance of the return distribution, then the required quantile for 
probability p, denoted by �p is given by  
 
�p = �  + �p �                                                                                                                    ….. (1) 
 
where, �p denotes the p-th quantile of standard normal distribution. 
The variance can also be modelled conditionally (what is done for handling the 
volatility clustering phenomenon observed in financial markets returns). In this case, it 
is assumed that the distribution of return series given all past information follows a 
normal distribution, with the variance being a function of past observations/residuals.  
Thus, variance here is conditionally heteroskedastic. The popular Risk Metric 
approach (J.P.Morgan, 1996) basically estimate VaR by modelling volatility clustering 
phenomenon in a simplified/restricted form and more general form of conditional 
heteroskedasticity can be modelled through the class of ARCH/GARCH models 
(Engle, 1982; Boller, 1986). Interestingly, however, Wong et al. (2003) report that 
though conditional heteroscedastic models are very useful for better capturing 
volatility clustering phenomenon, they do not necessarily produce good VaR 
estimates. For the sake of completeness of the discussion, we, however, touch upon the 
issue. But we restrict our discussion only to the Risk-Metric approach, which 
postulates conditional variance as a weighted average of past variance and past 
returns as follows.  
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where 2
tσ and rt denote conditional variance and return at time t, respectively; and the 

parameter �, known as decay factor, satisfy 0 < � <1. 
 
Once we know the estimate of conditional variance at time t, the quantile of 
conditional distribution (under normality), say �p,t, can be estimated simply by the Eq. 
 
�p,t = �t  + �p �t                                                                                                                    ….. (3) 
 
where, �t  represents the mean of the conditional distribution. 
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For daily data, the value of the decay parameter in the Risk Metric approach is 
generally fixed at �=0.94 (van den Goorberg and Vlaar, 1999). In our study, we 
experimented with three alternative values of � , viz., � =0.94, 0.96 and 0.98.  Thus, as 
stated earlier, we consider totally five VaR models (two for simple normality and three 
under Risk-Metric approach with three alternative values of decay parameter) under 
variance-covariance approach. 
 
2.1.2. Historical Simulation Method 

 
The major advantage with HS approach is that it does not assume any specific form 
for return distribution, yet captures the characteristics of the price change distribution 
of the portfolio.  Besides, a benefit in using this method is that it can cope with all 
types of portfolios that are either linear or non-linear. However, accuracy of HS 
method would depend primarily on the quality/nature of past data. If the past data 
does not contain highly volatile periods, then HS method would not be able to capture 
the same. Hence, HS should be applied when we have very large data points that are 
sufficiently large to take into account all possible cyclical events. HS method takes a 
portfolio at a point of time and then revalues the same using the historical price series. 
Once we calculate the daily returns of the price series, then sorting the same in an 
ascending order and find out the required data point at desired percentiles. Linear 
interpolation can be used if the required percentile falls in between two data points. 
The moot question is what length of price series should be used to compute VaR using 
HS method and what we should do if the price history is not available. It has to be 
kept in mind that HS method does not allow for time-varying volatility. 

 
2.1.3. Tail-Index Based Methods – Hill’s Estimator and VaR Estimation 
 
In financial literature, it is widely believed that high frequency return has fatter tails 
than can be explained by the normal distribution. The tail-index measures the amount 
of tail fatness of return distribution and fit within the extreme value theory (EVT). One 
can therefore, estimate the tail-index and measure VaR based on that. The basic 
premises of this idea stems from the result that the tails of every fat-tailed distribution 
converge to the tails of Pareto distribution. The upper tail of such a distribution can be 
modeled as, 
 
Prob[X > x] ≈ Cα |x|–α    (i.e. Prob[X � x] ≈ 1 - Cα |x|-α);   x > C                                ….. (4)                                    
 
Where, C is a threshold above which the Pareto law holds; |x| denotes the absolute 
value of x and the parameter � is the tail-index.  
 
Similarly, lower tail of a fat-tailed distribution can be modeled as 
 
Prob[X > x] ≈1 - Cα |x| –α    (i.e. Prob[X � x] ≈ Cα |x| -α);   x < C                               ….. (5)   
 
Where, C is a threshold below which the Pareto law holds; |x| denotes the absolute 
value of x and the parameter � is the tail-index.  
      
In practice, observations in upper tail of the return distribution are generally positive 
and those in lower tail are negative. Thus, both of Eq. (4) and Eq. (5) have importance 
in VaR measurement. The holder of a short financial position suffers a loss when 
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return is positive and therefore, concentrates on upper-tail of return distribution (i.e. 
Eq. 4) while calculating his VaR (Tsay, 2002, pp. 258). Similarly, the holder of a long 
financial position would model the lower-tail of return distribution (i.e. use Eq. 5) as a 
negative return makes him suffer a loss.   
 
From Eq. (4) and (5), it is clear that the estimation of VaR is crucially dependent on the 
estimation of tail-index �. There are several methods of estimating tail-index and in 
the present paper, we consider two approaches, viz. (i) Hill’s (1975) estimator and (ii) 
the estimator under ordinary least square (OLS) framework suggested by van den 
Goorbergh (1999). We consider here the widely used Hill’s estimator, a discussion on 
which is given below. 
 
Hill’s Estimator 
 
For given threshold C in right-tail, Hill (1975) introduced a maximum likelihood 
estimator of γ = 1/α as 
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where Xi’s, i=1,2, …..,n are n observations (exceeding C) from the right-tail of the 
distribution.  
 
In practice, however, C is unknown and needs to be estimated. If sample observations 
come from Pareto distribution, then C would be estimated by the minimum observed 
value, the minimum order statistic. However, here we are not modeling complete 
portion of Pareto distribution. We are only dealing with a fat-tailed distribution that 
has right tail that is approximated by the tail of a Pareto distribution. As a 
consequence, one has to select a threshold level, say C, above which the Pareto law 
holds. In practice, Eq. (6) is evaluated based on order statistics in the right-tail and 
thus, the selection of the order statistics truncation number assumes importance. In 
other words, one needs to select the number of extreme observations n to 
operationalise Eq. (6). Mills (1999, pp. 186) discusses a number of available strategies 
for selecting n and a useful technique for the purpose is due to Phillips, et al. (1996). 
This approach makes an optimal choice of n that minimises the MSE of the limiting 
distribution of �̂ . To implement this strategy, we need estimates of � for truncation 
numbers n1 = N� and n2=N�, where 0 < 	 < 2/3 < � < 1. Let j�̂ be the estimate of � for n 
=nj, j=1,2. Then the optimal choice for truncation number is n = [� T2/3], where � is 
estimated as 3/2

2121 |)ˆˆ)(/)(2/ˆ(|ˆ ���� �� nT . Phillips et al. (1996) recommended 
setting 	 =0.6 and � = 0.9 (see Mills, 1999, pp. 186).   
 
Estimating VaR Using Hill’s Estimator 
 
Once tail-index α is estimated, the VaR can be estimated as follows (van den 
Goorbergh and Vlaar, 1999). Let p and q (p < q) be two tail probabilities and xp and xq 
are corresponding quantiles. Then p ≈ Cα (xp)-α and q ≈ Cα (xp)-α indicating that xp ≈ xq 
(q/p)1/α. Assuming that the threshold in the left-tail of the return distribution 
corresponds to the  m-th order statistics (in assending order), the estimate of xp be 
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where R(m) is the m-th order statistics in the assending order of n observations chosen 
from tail of the underlying distribution; p is the given confidence level for which VaR 
is being estimated; �̂ is the estimate of γ. 
 
The estimate of VaR (with meanings of notations as defined above) would be 

p
t| 1tV̂

�
 = - Wt px̂ ; px̂ is estimate of quantile of return distribution                               ….(8)                                    

or 
p

t| 1tV̂
�

 = Wt [1 – exp( px̂ )]; px̂ is estimate of quantile of log-return distribution        ….(9)                                     
 
The methodology described above estimates tail-index and VaR for right tail of a 
distribution. To estimate the parameters for left tail, we simply multiply the 
observations by (–1) and repeat the calculations.    
 
2.2. Use of VaR with one-day Holding Period for Estimating VaR with Longer 
Holding Period 
 
In practice above methods are used to estimate VaR numbers daily based on one-day 
holding period returns. However, for computing capital charge, we need the VaR 
numbers for longer holding period, say 10-days or 30-days. Using the estimates of      
1-period VaR, H-period (say, H=10, 30) VaR can be estimated, under certain 
assumptions, by following approximation (van den Goorbergh and Vlaar, 1999); 
 

VaR(H) 
 
� �

� ���

�
�

� �

ModelsVaRotherforVaR(1)H

αindextailthroughestimatedisVaR(1)ifVaR(1)Hα

 

                                                                                                                                           ….. (10) 
Where VaR(k) represents the VaR for k-days holding period, k �1. 
 
3. VaR Selection/Evaluation Criteria  
 
As stated earlier, banks may be inclined to underestimate their VaRs as this helps in 
reducing their capital charges. For this reasons, the Basle Committee prescribed certain 
requirements on VaR models used by banks to ensure their reliability (Wong et al., 
2003) as follows;   
 

(1) VaRs must be estimated based on daily return of at least one year with 99% 
confidence level.  

(2) Capital charge is equal to the 60-day moving average of 10-day VaRs 
multiplied by a factor known as capital multiplier (or simply multiplying 
factor), or 10-day VaR on the current day, which ever is higher. The 
multiplying factor may vary from 3 to 4 depending upon the accuracy level of 
VaR estimates.   

 
In Indian market, RBI has issued guidelines for Primary Dealers (PDs) to use one year 
and not less than 250 trading days for VaR estimation and the capital charge is 
prescribed as the higher of (i) the previous day's 99% VaR (for 30-days holding period) 
measure and (ii) the average of the daily value-at-risk measures on each of the 
preceding sixty business days, multiplied by a multiplication factor prescribed by RBI 
(3.30 presently for PDs).  
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In general, the amount of required capital  (RC) for market risk at time (t+1) would be 
(Lopez, 1998); 
 
RCt+1 = Max{VaRt(H), K * Avg60_VaRt(H)}                                                                 ….. (11) 
 
Where H and K represent holding period and multiplying factor (i.e. capital 
multiplier), respectively, as prescribed by the regulators; VaRt(H) represents VaR with 
99% confidence level for holding period H-days; and Avg60_VaRt(H) is the average of 
VaRt(H)s in last 60-days (i.e. average of estimated VaRs for time points t-59 to t).  As 
stated above, BIS prescribes H=10 days and the value of K is at least 3, which may rise 
upto 4 depending upon the accuracy of VaR model. However, for PDs in India, RBI 
prescribes H=30 days and K=3.3. 
 
Further, in order to assess the accuracy of VaR models, the Basle Committee has 
suggested to conduct backtesting. The basic premises of backtesting stems from that 
the accuracy of a VaR model can be checked by counting the number of times actual 
loss of a portfolio exceeds estimated VaR (i.e. VaR estimate fails), say in 100 days. For a 
VaR with 99% confidence level, logically, one would expect 1 failure in 100 days. But if 
the number is more (less) than 1%, then the model is under (over) estimating VaR 
numbers.  The Basle Committee provides guidelines for imposing penalty leading to 
higher multiplication factor, when the number of failure is too high. However, no 
penalty is imposed when the failure occurs with less frequency than the expected 
number.  
 
3.1. Backtesting 
 
To do the backtesting, we can think of an indicator variable I(t) which is one if return of 
the day is more than the VaR for the previous day and zero otherwise. Average of the 
indicator variable should be our VaR percent. Basle Committee (1996b) provides following 
Backtesting criteria for an internal VaR model (see van den Goorbergh and Vlaar, 1999; 
Wong et al., 2003, among others) 
 

(1) One-day VaRs are compared with actual one-day trading outcomes. 

(2) One-day VaRs are required to be correct on 99% of backtesting days. There 
should be at least 250 days (around one year) for backtesting. 

 
(3) A VaR model fails in Backtesting when it provides 5% or more incorrect VaRs. 

(4) If a bank provides a VaR model that fails in backtesting, it will have its capital 
multiplier adjusted upward, thus increasing the amount of capital charges. 

  
For carrying out the Backtesting of a VaR model, realized day-to-day returns of the 
portfolio are compared to the VaR of the portfolio. The number of days when actual 
portfolio loss was higher that VaR provides an idea about the accuracy of the VaR 
model. For a good VaR model, this number would approximately be equal to the 1 per 
cent (i.e. 100 times of VaR probability) of back-test trading days.  If the number of 
violation (i.e. number of days when loss exceeds VaR) is too high, a penalty is imposed 
by raising the multiplying factor (which is at least 3), resulting in an extra capital 
charge. The penalty directives provided by the Basle Committee for 250 back-testing 
trading days is as follows; multiplying factor remains at minimum (i.e. 3) for number 
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of violation upto 4, increases to 3.4 for 5 violations, 3.5 for 6 violations, 3.65 for 
violations 8, 3.75 for violations 8, 3.85 for violation 9, and reaches at 4.00 for violations 
above 9 in which case the bank is likely to be obliged to revise its internal model for 
risk management (van den Goorbergh and Vlaar, 1999).   
 
3.2. Kupiec’s Test  
 
The accuracy of a VaR model can also be assessed statistically by applying Kupiec’s 
(1995) test (see, for example, van den Goorbergh and Vlaar, 1999 for an application of 
the technique). The idea behind this test is that the VaR-violation (i.e. proportion of 
cases of actual loss exceeding VaR estimate) should be statistically equal to the 
probability level for which VaR is estimated. Kupiec (1995) proposed a likelihood ratio 
statistics for testing the said hypothesis.  
 
If z denotes the number of times the portfolio loss is worse than the true VaR in the 
sample (of size T, say) then z follows a Binomial distribution with parameters (T, p), 
where p is the probability level of VaR. Note that here z is actually the summation of It 
at T time points. Ideally, the more z/T closes to p, the more accurate estimated VaR is. 
Thus the null hypothesis z/T = p may be tested against the alternative hypothesis z/T 
≠ p. The likelihood ratio (LR) statistic for testing the null hypothesis against the 
alternative hypothesis is 

LR = 2 � �
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Under the null hypothesis, LR-statistic follows a χ2-distribution with 1-degree of 
freedom. 
 
3.3. Tests for Conditional Coverage – Christoffersen’s Tests 
 
The VaR estimates are also interval forecasts, which thus, can be evaluated 
conditionally or unconditionally. While the conditional evaluation considers 
information available at each time point, the unconditional assessment is made 
without reference to it. The test proposed by Kupiec provides only an unconditional 
assessment as it simply counts exceptions (i.e. VaR violations) over the entire 
backtesting period (Lopez, 1998, 1999). In the presence of time-varying volatility, the 
conditional accuracy of VaR estimates assumes importance. Any interval forecast 
ignoring such volatility dynamics may have correct unconditional coverage but at any 
given time, may have incorrect conditional coverage. In such cases, the Kupiec’s test 
has limited use as it may classify inaccurate VaR as acceptably accurate. 
 
Christoffersen (1998) develops a three step testing procedure: a test for correct 
unconditional coverage (which is same as Kupiec’s test), a test for ‘independence’, and 
a test for correct ‘conditional coverage’ (Sarma, et al., 2003). All these tests use 
Likelihood-Ratio (LR) statistics. In order to simplify the discussion let us construct an 
indicator variable as below; 
 

 
�
�
�

�
otherwise

ttimeatVaRexceedslossportfolioif
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1
                                                       ..... (13) 

where the time t varies over the backtesting trading period/days. 
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In order to have correct conditional coverage, VaR estimates should be such that the 
series It exhibits both unconditional coverage and serial independence. Thus, the test 
for conditional coverage is actually a joint test of both these two features. The relevant 
test statistics here is LRcc = LRuc+LRind, where LRcc, LRuc and LRind represent the 
likelihood-ratio statistics for testing correct conditional coverage, correct unconditional 
coverage and independence, respectively. The form of test statistics LRuc is same as 
Kupiec’s test (i.e. LRuc=LR defined in Eq. 12) and the forms of test statistics LRcc and 
LRind are as below; 
 
LR Statistics for the test of Independence 
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where nij  = number of i values followed by a j in the It series, i,j=0,1;  
          �ij   =Pr{It=i|It-1=j}, i,j=0,1;       
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If the series It is serially independence, then LRind follows a 
2 distribution with 1 
degree of freedom. 
 
LR Statistics for the Test of ‘Correct Conditional Coverage’ 
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where nj=number of j’s, j=0,1, in the It series; p is the probability level (i.e. tolerance 
limit) of the VaR estimates, and )/(ˆ 101 nnn ���  is the maximum likelihood estimate 
of p.  
 
Under the correct conditional coverage, LRcc follows a 
2 distribution with 2 degrees of 
freedom. 
 
3.4. Evaluation of VaR Models Using Loss-Function 
 
All the tests mentioned above, ultimately deal with the frequency of the occurrence of 
VaR violations, either conditional or unconditional, during the backtesting trading 
days. These tests, however, do not look at the extent/magnitude of additional loss 
(excess of estimated VaR) at the time of VaR violations/failures.  However, a portfolio 
manager may prefer the case of more frequent but little additional loss than the case of 
less frequent but huge additional loss. The underlying VaR model in the former case 
may fail in backtesting but still the total amount of loss (after adjusting for penalty on 
multiplying factor if any) during the backtesting trading days may be less than that in 
later case. So long as this is the case, a portfolio manager may even prefer to accept a 
VaR model even if it fails in backtesting and may be ready to pay penalty (for excess 
number of VaR violations). This means that the objective function of a portfolio 
manager is not necessarily be the same as that provided by the backtesting. Each 
manager may set his own objective function and try to optimize that while managing 
market risk. But, loss-functions of individual portfolio managers are not available in 
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public domain and thus, it would be impossible to select a VaR model appropriate for 
all managers. However, discussion on a systematic VaR selection framework by 
considering a few specific forms of loss-function would provide insight into the issue 
so as to help individual manager to select a VaR model on the basis of his own loss-
function. On this perception, it would be interesting to illustrate the VaR selection 
framework with the help of some specific forms of loss-function.  
 
The idea of using loss-function for selecting VaR model, perhaps, is proposed first by 
Lopez (1998, 1999). He shows that the binomial distribution-based test is actually 
minimizing a typical loss-function – gives score 1 for a VaR exception and a score 0 
otherwise. However, it is hard to imagine an economic agent who has such a utility 
function: one which is neutral to all times with no VaR violation and abruptly shifts to 
score of 1 in the slightest failure and penalizes all failures equally (Sarma, et al., 2003). 
Lopez (1998) also considers a more generalised loss-function which can incorporates 
the regulatory concerns expressed in the multiplying factor and thus is analogous to 
the adjustment schedule for the multiplying factor for determining required capital.  
But, he himself see that, like the simple binomial distribution-based loss-function, this 
loss-function is also based on only the number of exceptions (VaR violations) in 
backtesting observations – with paying no attention to another concern, the magnitues 
of loss at the time of failures. In order to handle this situation, Lopez (1998) also 
proposes a third type of loss-function addressing the magnitude of exception as 
follows; 
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where Losst  and VaRt, respectively, are the magnitude/amount of loss and estimated 
Value-at-Risk at time t. Lt denotes the score in loss-function at time t.  
 
In the spirit of Lopez (1998), Sarma et al. (2003) consider two loss-functions, viz., 
regulatory loss function and the firm’s loss function, as follows; 
 
Regulatory Loss Function 
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Firm’s Loss Function 
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where � represents the opportunity cost of capital. 
 
As seen above, loss-function can be formed in several ways, and portfolio managers 
have to form their own loss-functions depending upon their risk-management and 
investment strategy. In this empirical study, what we are presenting is a framework 
for using loss-function in selecting VaR models. In so doing, we implement two loss-
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function given by Eq.s (16) & (17)3. It may be noted that if the number of VaR 
violations (i.e. loss exceeds estimated VaR) in backtesting is X, then the value of loss-
function in Eq. (16) becomes [X + �t {It (Losst-VaRt-1)2}] and that for loss-function in 
Eqn. (17) becomes [�t {It (Losst-VaRt-1)2}], where �t indicates the summation over all 
times t in backtesting trading days. While Eq. (16) represents a loss-function that 
penalizes for both frequency of VaR violation as well as magnitude of loss above 
estimated VaR, the loss function in Eq. (17) considers only the magnitude of excess 
loss. Thus, someone who wants a loss-function that penalizes a VaR model more 
severely that binomial loss function (i.e. backtesting), may prefer the loss-function Eq. 
(16) over that in Eq. (17). This is because �t {It (Losst-VaRt-1)2}] need not always be more 
than X.   
 
The basic reason for not considering loss-function in Eq. (18) in our empirical study is 
that the required capital for market risk is charged irrespective of the fact whether loss 
in the underlying portfolio occurs or not. Thus, it is not clear as to why the 
opportunity cost of holding capital is considered only when loss does not exceed 
estimated VaR. Besides, when loss-occurs, the score of loss-function depends only on 
the amount of loss above estimated VaR and does not penalize the VaR model for high 
occurrences of VaR violations. As discussed above, a conservative portfolio manager 
who want to penalize a VaR model for VaR violations more severely than binomial 
loss-function, may not prefer this type of formulation of loss-function.    
 
4. Data  
 
The database used in this empirical study is same as Nath and Samanta (2003) and 
consists of information on select GOI bonds and two representative portfolios, one for 
banks and another for Primary Dealers (PDs), of GOI bonds. The selected 31 bonds 
come from both illiquid as well as liquid basket. Liquid bonds are those bonds where 
we observe trading regularly while illiquid bonds are infrequently traded. For 
applying uniform market conventions in valuation and simplicity, we have not taken 
T-Bills in our portfolio but it can be included as well.  In this process, we consider 31 
GOI bonds for our study. Two representative portfolios of GOI bonds considered here 
have been constructed keeping in mind Banks and PDs. For the representative 
portfolio for entire banking sector that hold almost all securities issued by the Govt., 
we assign weight to each bond proportional to its outstanding issue size. For the 
representative portfolio for PDs, we assume that they hold all liquid bonds.  
 
4.1. Valuation of Individual GOI Bonds 
 
In order to estimate VaR for a portfolio of GOI bonds, one has to derive the historical 
data on price/return of the portfolio. Construction of such historical series is difficult 
because bonds change their values everyday (assuming ceteris paribus) because of time 
to maturity come down everyday and hence the Present-Value (PV) changes. As well 
known, derivation of PV of bonds requires information on zero coupon yield curve 
(ZCYC). But the main difficulty for estimating ZCYC is that zero-coupon bonds are 
generally not traded for all maturity periods (particularly for medium-to-long term 
maturities). So, one has to extract ZCYC from the traded data/prices of coupon-
bearing bonds. There exists a vast literature on the subject (see for instance, 

                                                 
3 While saying this, one may note that we are also using the binomial loss-function, which is implicitly 
considered in backtesting. 
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McCulloch, 1971; Nelson and Siegel, 1987; Vasicek and Fong, 1982; Shea, 1985; among 
others), though consensus has not yet emerged on choosing the best technique. It is 
seen that no single technique can be the best for all economies and all times. While 
choosing a technique for estimating ZCYC, one has to consider several factors, such as, 
market structure and depth, degree of liquidity of different bonds. The estimation of 
ZCYC for GOI bonds, however, does not fall under the agenda of this study and we 
have made use of the ZCYC estimated by the National Stock Exchange (NSE). The 
NSE uses the methodology proposed by Nelson and Siegel (1987) and has created 
database on estimated ZCYC (and parameters of Nelson-Siegel functional form) from 
January 1997. These estimates are available in public domain free of cost. Accordingly, 
we use NSE ZCYC parameters to price the individual GOI bonds and portfolios of 
such bonds from 1997. Our data period ends on June 23, 2003. Based on the estimated 
historical prices of a bond, return series is derived as  
 
Rt = 100 * { loge(Pt) – loge(Pt-1)}                                                                                       ….. (19) 
 
Where Pt denotes the price of the bond at time t. 
 
However, there was an apparent estimation problem on 23-05-1997 when suddenly 
the yields had dropped abnormally and increased abnormally next day. To ensure 
proper use of data, we had looked at the underlying market and did not observe any 
abnormal trading behaviour. Hence while using the data we considered the data point 
of 23-05-1997 as an estimation problem and replaced the same with the average value 
of previous day’s and next day’s model prices and calculated returns accordingly. The 
returns considered in this study are the continuously compounded returns, which are 
derived as the first difference of daily observations on logarithm of prices. In this 
process, we get 1874 daily time series observations on return on each of 31 selected 
GOI bonds. 
 
4.2. Two Hypothetical Portfolios of GOI Fixed Income Securities 
 
Estimation of VaR for an individual bond can simply be calculated using the return 
series implied by the historical price of the bond constructed using the NSE ZCYC. But 
for calculating VaR of a portfolio, we need to find out the single price series of the 
portfolio using the historical yield curves. In our portfolio of GOI bonds, weight of a 
bond is equal to its share in the total portfolio value. While constructing the historical 
price series of the portfolio, it is also assumed that weights have remained as it is 
today. This is because VaR envisages to find out the possible maximum loss of a 
portfolio today in a given time horizon with a level of probability and hence the 
portfolio needs to be maintained as of today’s composition. 
 
The portfolio consists of many securities and in our case we are concerned with only 
Gilts. The basic price Eq. of the portfolio (of  n bonds) can be written as follows: 

 

bondnnbondbondportfolio www Pr*........Pr*Pr*Pr 2211 ����            ….. (20) 
 

where Pr denotes the price of bond/portfolio at time t and wi, i=1,2,…,n denotes the 
proportionate value of the holding of security i  at the end of day t. 
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5. Empirical Results 
 
5.1. Estimated VaRs from Competing Models for Calculating Required Capital 
 
In this section we report estimated VaR figures (in percentage terms) for two 
alternative holding periods (H), viz.., H=10 days and 30 days. These VaRs with 
holding period H-days are derived indirectly based on estimated one-day VaRs using 
Eq. (10). The VaRs for one-day holding period are calculated directly from daily 
returns. As stated earlier, all VaR estimates correspond to the 99% confidence level (i.e. 
probability level 0.01) and relate to the left-tail of return distribution. Relevant results 
for two representative portfolios of GOI bonds are given in Table 1 and corresponding 
results for selected 31 GOI bonds are given in Annexure 1. In Table 1 and Annexure 1, 
we use the symbol VaR(H), to denote the VaR with H-days holding period for the last 
day in our database and Avg60_VaR(H) to denote the average of VaRs with H-days 
holding period in last 60 days, where holding period H is either 10-days or 30-days. 
One can put these estimates (i.e. VaR(H) and Avg60_VaR(H)) in Eq. (11) to derive the 
required capital for a given multiplying factor. 
 
As stated above, an important point needs to be noted here is that all VaR estimates 
provided in Table 1 and Annexure 1 are in percentage form, and thus, may actually be 
termed as the relative VaR (Wong, et al., 2003), which refers to the percentage of a 
portfolio value which may be lost after h-holding period with a specified probability 
(i.e. the probability level of VaR). The absolute VaR (i.e. the VaR expressed in Rupees 
term) can easily be computed by multiplying the portfolio values with the estimated 
relative VaR. Similarly, the capital charge (Eq. 11) can also be represented in two 
alternative forms, viz., relative (i.e. in percentage) or absolute (i.e. in rupees terms). 
The additional information we require to convert a relative VaR/capital charge in a 
day to a corresponding absolute term (i.e. rupees term) figures is the value of the 
portfolio. For example, from Table 1 we see that the VaR(10) for the representative 
portfolio (of GOI Bonds) for PDs in the last day in our data period (i.e. June 23, 2003) 
has been estimated at 3.9039 % under normal method using full sample. Thus, if value 
of the portfolio at that day was Rs. 1000, estimated absolute VaR(10) in Rupees terms 
would be Rs. 39.039 (i.e. 3.9039 x 10).  = 39.039 using the normal method (full sample).    
 

Table 1: Estimated VaRs for Two Representative Portfolios of GOI Bond 
Variance-Covariance 
 (Normal)  Method 

Historical 
Simulation 

Tail-Index 
(Hill’s Estimator) 

Simple 
(homoscadastic) 

Risk Metric with � 
(conditional heteroscadasctic) 

Portfolio 

Description of 
Estimate  

(in per cent) Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 
PDs VaR (10) 3.9039 2.9201 2.5269 1.5993 1.0647 4.6503 3.8809 4.6719 9.8598 
 Avg60_VaR( 10) 3.9338 3.0510 3.3990 2.8738 2.3285 4.6682 3.9264 4.7518 7.2682 
 VaR (30) 6.7617 5.0577 4.3767 2.7701 1.8442 8.0546 6.7219 8.0066 21.9407 
 Avg60_VaR( 30) 6.8136 5.2845 5.8872 4.9775 4.0331 8.0855 6.8008 8.1652 14.6022 

        

Banks VaR (10) 3.4145 2.6237 2.3002 1.4538 0.9544 4.0668 3.2897 4.0805 6.8948 
 Avg60_VaR( 10) 3.4406 2.7601 3.0926 2.6206 2.1270 4.0755 3.3844 4.1375 7.1701 
 VaR (30) 5.9142 4.5444 3.9840 2.5181 1.6531 7.0439 5.6979 7.0087 14.2514 
 Avg60_VaR( 30) 5.9593 4.7807 5.3565 4.5390 3.6840 7.0590 5.8619 7.1136 14.6526 
 
The columns in Table 1 and Annexure 1 are self-explanatory. As can be seen therein, 
we present estimated VaRs from five alternative schemes under normal method (one 
for full sample estimate, one for rolling sample estimate, and three for Risk Metric 
approach corresponding to three alternative decay factors, � = 0.98, 0.96 and 0.94) and 



 16

full sample as well as rolling sample estimates under each of Historical Simulation and 
Tail-Index (Hill’s estimator) based approach. Thus, we have considered nine 
competing VaR models/strategies. Full sample estimates at any day, say t, are derived 
based on all returns from day 1 to t. In the case of rolling sample estimates, we fix the 
size/length of the rolling windows at 500 days4. So, for rolling sample estimates of 
VaRs at time t, returns for time points (t-499) to t are used. The columns with titles 
‘Full’ and ‘Rolling’ provide estimates corresponding to full sample and rolling sample, 
respectively.  
 
5.2. Evaluating Competing VaR Models  
 
For evaluating performance of competing VaR models, we first carried out the 
backtesting with daily returns for last 290 days (covering about a period of one year as 
backtesting observations) in our sample. The backtesting strategy adopted for rolling 
sample estimate is as follows; estimate 1-day VaR for t-th day based on returns for 
time points (t-499)-th to t-th day. If the return for the (t+1)-th day is worse than VaR 
(i.e. for left tail, if percentage return is lower than negative of Var expressed in terms of 
percentage), we say a failure occurs. Then estimate 1-day VaR for (t+1)-th day and 
compare the same with (t+2)-th day’s return to see whether another failure occurs or 
not. The process is repeated till the return for the last day in our database is compared 
with previous day’s VaR estimates. In our empirical exercise, t is so chosen that last 
290 observations on return are compared with previous day’s VaR estimates. In the 
case of full sample case, the backtesting is similarly performed except that at any time 
point t, VaR estimates are obtained based on all returns available upto time t (i.e. 
returns for time points 1 to t).   
 
As our VaR estimates have probability level 0.01 and the Backtesting trading days 
cover 290 daily returns, expected number of failures for a good VaR model (i.e. the 
number of occasions out of 290 days when actual return is worse than VaR) is 3. In 
Table 2, we report the results of Backtesting for two hypothetical portfolios. Detailed 
bond-wise results of Backtesting are presented in Annexure 2. Our empirical results 
show that for certain VaR models, backtesting with respect to many bonds/portfolios 
shows no VaR violations (i.e. no return were worse than VaR estimates). In such cases, 
it would be difficult to test the unconditional as well as conditional coverage. This is 
because in such a case some of the required probability estimates would be zero and 
so the LR test statistics in Eqs. 13-15 would be undefined. Therefore, we do not 
conduct statistical tests for unconditional/conditional coverage. However, loss-
function based evaluation of competing VaR models is done for each selected 
bond/portfolio. Relevant results are also presented in Table 2 (for selected portfolios) 
and Annexure 2 (for selected GOI bonds). 
 
In Table 2 and Annexure 2, there are three rows under each portfolio/bond. The first 
row indicates number of VaR violations (i.e. failures) in 290-days backtesting 
observations. In second row, denoted by ‘Loss 1’, represents the estimated value of the 
loss-function given in Eq. (17) over 290 backtesting observations. Finally, the third 
row, indicated by ‘Loss2’, presents the value of the loss-function in Eq. (16).  Thus, by 
construction, value of ‘Loss2’ would be equal to the sum of the score in backtesting 

                                                 
4 As per the BIS guidelines, VaR should be estimated using daily returns for at least one year. This 
requirement is satisfied for 500-days rolling sample size. However, we do admit that the length of rolling 
window chosen here is arbitrary and one may experiment with other alternative rolling sample sizes, say, 
750, 1000, 1250, 1500, so on. 
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(i.e. number of failures in 290 days backtesting observations) and the estimated value 
of ‘Loss1’. 

Table 2: Assessing Competing VaR Models for Two Portfolios 

Portfolio 
Evaluation 

Criterion/Function 
Variance-Covariance 

(Normal)  Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

  
Simple 

(homoscadastic) 
Risk Metric with �           

(conditional heteroscadasctic) 

  Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 
PDs Backtesting 2 8 7 8 7 2 3 0 0 

 Loss 1 0.1336 1.0555 0.9383 0.5154 0.3286 0.0031 0.1664 0 0 

 Loss 2 2.1336 9.0555 7.9383 8.5154 7.3286 2.0031 3.1664 0 0 

           

Banks Backtesting 2 8 7 7 7 2 3 2 0 

 Loss 1 0.1856 0.8681 0.8321 0.4347 0.2382 0.0282 0.2488 0.0253 0 

 Loss 2 2.1856 8.8681 7.8321 7.4347 7.2382 2.0282 3.2488 2.0253 0 

 
Our empirical results reveal that in generally normal-based methods/strategies 
(including Risk-Metric approach) are associated with too many failures over 
backtesting observations. This is reflection of the under estimated VaR. On the other 
hand, historical simulation performs very well in backtesting, providing number of 
failures very close to expectation (i.e. 3), though at times full sample VaR estimates are 
quite conservative as reflected in zero score in backtesting. Then comes the VaR model 
using Hill’s estimator. It appears that this approach provides too conservative VaR 
estimates. Because, the number of failures in backtesting for this approach is almost 
uniformly lower than that of HS method. Besides, the number of failures for Hill’s 
estimator based approach never exceeds the expected number 3.  The evaluation of the 
competing VaR models with the help of loss-functions gives no different conclusions. 
Interesting point, however, is that the approach based on Hill’s estimator provides 
conservative VaR estimates and generally provides the least magnitude of VaR 
violations (as captured through loss-functions).   
 
6. Concluding Remarks 
 
This paper has evaluated a number of available VaR models, such as, variance-
covariance/normal (including Risk-Metric approach), historical simulation and tail-
index based method for estimating VaR for a number of selected GOI bonds and 
representative portfolios of GOI bonds for banks and PDs. We discuss several 
evaluation criteria, such as, backtesting, statistical tests for accuracy in VaR estimates 
and loss-functions based assessment. Empirical results, however, are presented only 
for the backtesting and loss-function based evaluation. Statistical tests are not 
conducted for certain practical reasons stated earlier. Our empirical results are 
interesting. It is seen that normal methods (including Risk-Metric approach) generally 
under-estimate VaRs. On the other hand, VaR models based on HS and tail-index 
(using Hill’s estimator) are quite good, though the later produces slightly more 
conservative VaR estimates. But when we look at the available loss-functions, tail-
index method appears to give least magnitude of excess loss (i.e. loss over estimated 
VaR). These results, however, are tentative. One needs to experiment with alternative 
sizes of rolling sample to check the robustness of the results. Moreover, it would be 
interesting to search for more appropriate loss-functions while evaluating VaR 
models.  
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Annexure 1: Estimated VaRs for Each Selected GOI Bond 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator)
Static Model Risk Metric with � 

GOI Bond Description of Estimate Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling
2004-12.50% VaR (10) 1.5194 1.3763 1.2438 1.0148 0.8757 1.9577 1.7830 1.8746 1.9243 

 Avg60_VaR( 10) 1.5272 1.4640 1.4925 1.3920 1.2574 1.9663 1.8801 1.8985 2.2997 

 VaR (30) 2.6317 2.3838 2.1543 1.7577 1.5168 3.3908 3.0883 3.0645 3.3717 

 Avg60_VaR( 30) 2.6451 2.5358 2.5851 2.4110 2.1779 3.4057 3.2564 3.1070 4.1391 

        

2005 11.19% VaR (10) 2.2193 2.2137 2.1869 1.7640 1.5121 2.8697 2.3981 2.7453 2.2003 

 Avg60_VaR( 10) 2.2282 2.3451 2.6418 2.4442 2.1912 2.8726 2.5035 2.8147 2.7383 

 VaR (30) 3.8439 3.8342 3.7878 3.0553 2.6191 4.9705 4.1536 4.5957 3.4575 

 Avg60_VaR( 30) 3.8593 4.0619 4.5758 4.2335 3.7953 4.9755 4.3361 4.7440 4.5038 

        

2006-11.68% VaR (10) 2.3228 2.3521 2.2959 1.8303 1.5563 2.8776 2.6136 3.0929 2.5486 

 Avg60_VaR( 10) 2.3325 2.5200 2.7923 2.5683 2.2899 2.9345 2.7748 3.092 2.9406 

 VaR (30) 4.0232 4.0740 3.9766 3.1702 2.6956 4.9841 4.5269 5.3536 4.1228 

 Avg60_VaR( 30) 4.0400 4.3647 4.8364 4.4484 3.9662 5.0826 4.8060 5.3440 4.8588 

        

2007 11.90% VaR (10) 2.4828 2.4428 2.2857 1.7678 1.4680 3.0260 3.1002 3.18291 3.4061 

 Avg60_VaR( 10) 2.4954 2.6495 2.8263 2.5662 2.2599 3.0531 3.6106 3.4295 4.0010 

 VaR (30) 4.3004 4.2311 3.9589 3.0619 2.5426 5.2412 5.3697 5.5396 5.9559 

 Avg60_VaR( 30) 4.3222 4.5891 4.8953 4.4448 3.9143 5.2882 6.2538 6.1125 7.0539 

        

2008 11.50% VaR (10) 4.7743 3.3079 2.8044 1.8254 1.2707 5.5596 4.3848 6.1370 6.0420 

 Avg60_VaR( 10) 4.8107 3.4321 3.7403 3.1915 2.6289 5.5632 4.5334 6.0341 6.7164 

 VaR (30) 8.2693 5.7294 4.8573 3.1617 2.2009 9.6296 7.5946 10.8698 11.266 

 Avg60_VaR( 30) 8.3323 5.9446 6.4783 5.5279 4.5534 9.6358 7.8521 10.6022 12.6572 

        

2008 12% VaR (10) 3.6735 2.8549 2.3265 1.5651 1.1231 3.9501 3.1308 3.2092 2.7734 

 Avg60_VaR( 10) 3.7005 3.0233 3.0597 2.6474 2.2181 3.9646 3.5568 3.286 3.1412 

 VaR (30) 6.3626 4.9448 4.0297 2.7108 1.9453 6.8418 5.4228 5.5316 4.4494 

 Avg60_VaR( 30) 6.4095 5.2365 5.2995 4.5854 3.8418 6.8669 6.1606 5.6899 5.1171 

        

2009 6.96% VaR (10) 3.1892 2.7818 2.4230 1.7801 1.4089 4.1159 3.2203 3.9371 3.3824 

 Avg60_VaR( 10) 3.2108 2.9973 3.0665 2.7298 2.3646 4.1245 3.9764 4.0421 3.6207 

 VaR (30) 5.5239 4.8182 4.1968 3.0833 2.4403 7.1289 5.5776 6.9354 5.6054 

 Avg60_VaR( 30) 5.5613 5.1915 5.3114 4.7281 4.0957 7.1439 6.8874 7.1482 5.9608 

        

2009-11.99% VaR (10) 2.9198 2.6044 2.1935 1.5836 1.2326 3.7642 3.1607 3.7567 3.5351 

 Avg60_VaR( 10) 2.9391 2.8120 2.8028 2.4825 2.1329 3.8682 3.9053 3.6899 3.413 

 VaR (30) 5.0573 4.5110 3.7993 2.7428 2.1349 6.5198 5.4746 6.6793 6.0138 

 Avg60_VaR( 30) 5.0906 4.8706 4.8545 4.2998 3.6943 6.6999 6.7642 6.5206 5.6288 
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Annexure 1: Estimated VaRs for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator)
Static Model Risk Metric with � 

GOI Bond Description of Estimate Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling
2010 6.20% VaR (10) 3.5892 2.9521 2.3287 1.6229 1.2134 4.1152 3.3890 4.0190 3.0293 

 Avg60_VaR( 10) 3.6149 3.1615 3.0200 2.6468 2.2513 4.1358 3.7028 4.0763 3.6073 

 VaR (30) 6.2167 5.1133 4.0335 2.8110 2.1017 7.1278 5.8700 6.8616 4.7467 

 Avg60_VaR( 30) 6.2611 5.4759 5.2308 4.5845 3.8994 7.1634 6.4134 6.9831 5.8490 

        

2010 7.55% VaR (10) 3.5677 2.9138 2.5029 1.7921 1.3797 4.1381 3.3006 3.9494 3.0941 

 Avg60_VaR( 10) 3.5933 3.1077 3.1993 2.8216 2.4228 4.1437 3.6728 3.95371 3.5031 

 VaR (30) 6.1794 5.0468 4.3352 3.1040 2.3897 7.1674 5.7169 6.7191 4.9061 

 Avg60_VaR( 30) 6.2237 5.3827 5.5413 4.8872 4.1964 7.1772 6.3615 6.6992 5.6662 

        

2011 9.39% VaR (10) 3.7982 2.9455 2.3688 1.6033 1.1592 3.9915 3.2092 4.2265 4.0205 

 Avg60_VaR( 10) 3.8261 3.1200 3.1084 2.6959 2.2663 4.0172 3.6173 4.2587 3.2776 

 VaR (30) 6.5787 5.1017 4.1030 2.7770 2.0078 6.9135 5.5585 7.2220 6.8303 

 Avg60_VaR( 30) 6.6270 5.4040 5.3839 4.6694 3.9253 6.9579 6.2654 7.2766 5.1746 

        

2011A 11.50% VaR (10) 3.7405 2.8847 2.3500 1.5788 1.1314 3.9857 3.1776 4.3548 3.9016 

 Avg60_VaR( 10) 3.7681 3.0516 3.0923 2.6744 2.2399 3.9946 3.6258 4.4226 3.5770 

 VaR (30) 6.4788 4.9964 4.0703 2.7346 1.9597 6.9034 5.5037 7.5486 6.6288 

 Avg60_VaR( 30) 6.5266 5.2855 5.3560 4.6322 3.8797 6.9189 6.2801 7.6748 5.8282 

        

2012 6.85% VaR (10) 4.3981 3.2136 2.5981 1.7500 1.2616 4.5264 3.6312 4.7759 4.4967 

 Avg60_VaR( 10) 4.4308 3.3736 3.4181 2.9581 2.4831 4.5300 3.8402 4.8183 4.4512 

 VaR (30) 7.6177 5.5662 4.5000 3.0311 2.1852 7.8400 6.2893 8.0823 7.7432 

 Avg60_VaR( 30) 7.6744 5.8432 5.9202 5.1235 4.3009 7.8461 6.6515 8.1589 7.5046 

        

2012 7.40% VaR (10) 4.3426 3.1782 2.5783 1.7330 1.2461 4.4703 3.6071 4.7236 4.2747 

 Avg60_VaR( 10) 4.3750 3.3366 3.3947 2.9356 2.4615 4.4786 3.8479 4.7977 4.5328 

 VaR (30) 7.5216 5.5048 4.4658 3.0017 2.1583 7.7427 6.2477 7.9999 7.3008 

 Avg60_VaR( 30) 7.5777 5.7791 5.8798 5.0846 4.2635 7.7571 6.6648 8.1501 7.7272 

        

2012 - 11.03% VaR (10) 3.9825 2.9727 2.4439 1.6286 1.1569 4.1693 3.3796 4.6142 4.2652 

 Avg60_VaR( 10) 4.0121 3.1289 3.2269 2.7823 2.3223 4.1994 3.6403 4.7073 4.4565 

 VaR (30) 6.8978 5.1489 4.2330 2.8209 2.0038 7.2214 5.8536 7.9721 7.3892 

 Avg60_VaR( 30) 6.9492 5.4194 5.5891 4.8191 4.0224 7.2736 6.3051 8.1576 7.7169 

        

2013-7.27% VaR (10) 4.8666 3.3774 2.8123 1.8747 1.3422 5.2831 4.2176 6.1261 6.1055 

 Avg60_VaR( 10) 4.9033 3.5124 3.7181 3.2010 2.6706 5.3066 4.3181 5.6303 4.6318 

 VaR (30) 8.4293 5.8499 4.8711 3.2471 2.3247 9.1507 7.3052 10.8003 11.2278 

 Avg60_VaR( 30) 8.4927 6.0837 6.4400 5.5443 4.6256 9.1913 7.4791 9.6759 7.7979 
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Annexure 1: Estimated VaRs for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator)
Static Model Risk Metric with � 

GOI Bond Description of Estimate Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling
2013 9.81% VaR (10) 4.3888 3.1414 2.6160 1.7330 1.2262 4.6698 3.8158 5.1347 4.1109 

 Avg60_VaR( 10) 4.4218 3.2836 3.4641 2.9784 2.4785 4.6731 4.0629 5.3153 4.3434 

 VaR (30) 7.6016 5.4411 4.5311 3.0016 2.1238 8.0884 6.6092 8.8761 6.8648 

 Avg60_VaR( 30) 7.6587 5.6873 5.9999 5.1587 4.2928 8.0941 7.0371 9.2384 7.3387 

        

2014 6.72% VaR (10) 4.5322 3.2638 2.6549 1.7859 1.2870 4.6691 3.7726 5.2517 4.6733 

 Avg60_VaR( 10) 4.5660 3.4178 3.4955 3.0227 2.5355 4.7182 3.9032 5.3034 4.4523 

 VaR (30) 7.8500 5.6530 4.5984 3.0932 2.2292 8.0872 6.5343 9.1017 8.1490 

 Avg60_VaR( 30) 7.9086 5.9199 6.0544 5.2355 4.3915 8.1721 6.7605 9.1965 7.5009 

        

2014 7.37% VaR (10) 3.4659 7.1298 2.9073 1.9304 1.3793 5.8036 4.4572 6.4296 6.2890 

 Avg60_VaR( 10) 3.5928 7.1855 3.8509 3.3083 2.7528 5.8133 4.5146 6.5651 5.2641 

 VaR (30) 6.0030 12.3492 5.0356 3.3435 2.3891 10.0521 7.7200 11.4319 11.6123 

 Avg60_VaR( 30) 6.2230 12.4456 6.6700 5.7301 4.7679 10.0689 7.8196 11.7124 9.1267 

        

2015 9.85% VaR (10) 5.1105 3.4905 2.9478 1.9226 1.3480 6.0114 4.7073 6.3557 5.8926 

 Avg60_VaR( 10) 5.1496 3.6093 3.9309 3.3529 2.7619 6.0252 4.7928 6.2847 5.5701 

 VaR (30) 8.8517 6.0457 5.1057 3.3301 2.3349 10.4120 8.1533 11.0873 10.5706 

 Avg60_VaR( 30) 8.9193 6.2514 6.8086 5.8075 4.7838 10.4360 8.3014 10.915 9.7678 

        

2015 10.47% VaR (10) 4.8243 3.3332 2.8210 1.8440 1.2910 5.5779 4.3903 6.2454 7.0777 

 Avg60_VaR( 10) 4.8610 3.4578 3.7569 3.2104 2.6502 5.5905 4.5402 6.2759 6.5534 

 VaR (30) 8.3559 5.7732 4.8860 3.1939 2.2360 9.6612 7.6041 11.1295 13.6973 

 Avg60_VaR( 30) 8.4195 5.9890 6.5072 5.5605 4.5903 9.6830 7.8639 11.1604 12.1484 

        

2016 10.71% VaR (10) 5.1249 3.5096 2.9604 1.9213 1.3400 6.0654 4.7814 6.0493 5.9644 

 Avg60_VaR( 10) 5.1641 3.6271 3.9551 3.3666 2.7650 6.0905 4.9037 6.1039 5.3444 

 VaR (30) 8.8765 6.0788 5.1276 3.3278 2.3210 10.5055 8.2816 10.3676 10.6666 

 Avg60_VaR( 30) 8.9446 6.2823 6.8504 5.8312 4.7891 10.5490 8.4934 10.4672 9.2497 

        

2017 7.46% VaR (10) 6.1258 4.1408 3.3826 2.2127 1.5849 7.8939 5.5677 7.5945 6.6535 

 Avg60_VaR( 10) 6.1729 4.2481 4.5133 3.8341 3.1472 7.9041 5.5719 7.6538 6.5342 

 VaR (30) 10.6102 7.1721 5.8589 3.8324 2.7452 13.6726 9.6435 13.1105 11.8431 

 Avg60_VaR( 30) 10.6917 7.3580 7.8173 6.6408 5.4511 13.6902 9.6509 13.2194 11.4275 

        

2017 8.07% VaR (10) 5.7998 3.9136 3.2430 2.1183 1.5052 7.1834 5.3096 6.6504 5.14904 

 Avg60_VaR( 10) 5.8443 4.0235 4.3272 3.6814 3.0255 7.2217 5.3898 6.7498 5.6119 

 VaR (30) 10.0455 6.7786 5.6170 3.6691 2.6071 12.4420 9.1964 11.2078 8.6016 

 Avg60_VaR( 30) 10.1226 6.9689 7.4949 6.3763 5.2403 12.5084 9.3354 11.3922 9.5526 
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Annexure 1: Estimated VaRs for Each Selected GOI Bond (Concld.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator)
Static Model Risk Metric with � 

GOI Bond Description of Estimate Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling
2018 6.25% VaR (10) 6.5942 4.4451 3.5716 2.3524 1.7106 8.6838 5.9028 8.1219 6.4938 

 Avg60_VaR( 10) 6.6449 4.5502 4.7564 4.0411 3.3221 8.7278 5.9302 8.3069 6.5831 

 VaR (30) 11.4215 7.6991 6.1862 4.0744 2.9629 15.0409 10.2240 13.9747 11.1076 

 Avg60_VaR( 30) 11.5093 7.8813 8.2384 6.9994 5.7540 15.1170 10.2713 14.3697 11.2628 

          

2019 10.03% VaR (10) 6.0358 4.2403 3.4027 2.2174 1.5962 7.8934 5.8531 7.3865 6.3055 

 Avg60_VaR( 10) 6.0823 4.3470 4.5468 3.8431 3.1350 7.9196 5.8821 7.5302 5.9434 

 VaR (30) 10.4543 7.3444 5.8936 3.8406 2.7646 13.6718 10.1379 12.6519 10.8219 

 Avg60_VaR( 30) 10.5348 7.5293 7.8753 6.6564 5.4299 13.7171 10.1881 12.9375 10.0379 

          

2020 10.70% VaR (10) 6.0702 4.3217 3.4467 2.2557 1.6401 7.8923 5.9298 7.8312 5.4687 

 Avg60_VaR( 10) 6.1168 4.4274 4.5994 3.8852 3.1691 7.9463 5.9669 7.8989 5.9006 

 VaR (30) 10.5138 7.4854 5.9699 3.9070 2.8407 13.6699 10.2707 13.6246 9.0112 

 Avg60_VaR( 30) 10.5946 7.6684 7.9663 6.7293 5.4891 13.7634 10.3349 13.7637 9.8972 

          

2022 8.35% VaR (10) 6.9245 5.1875 3.9977 2.7537 2.1710 9.0381 6.6782 8.8474 8.0445 

 Avg60_VaR( 10) 6.9763 5.2830 5.2397 4.4454 3.6731 9.1204 6.6782 8.9361 8.7287 

 VaR (30) 11.9936 8.9851 6.9243 4.7695 3.7604 15.6545 11.5669 15.2464 14.2216 

 Avg60_VaR( 30) 12.0832 9.1505 9.0755 7.6997 6.3619 15.7970 11.5669 15.4075 15.6829 

          

2023 6.30% VaR (10) 7.7308 5.9964 4.5473 3.2719 2.7158 10.1845 7.3682 10.0521 11.0038 

 Avg60_VaR( 10) 7.7869 6.0837 5.8552 4.9985 4.1856 10.3568 7.3682 10.1607 9.4047 

 VaR (30) 13.3901 10.3861 7.8761 5.6670 4.7039 17.6401 12.7622 17.3409 20.1467 

 Avg60_VaR( 30) 13.4873 10.5373 10.1415 8.6577 7.2496 17.9384 12.7622 17.5334 16.4888 

          

2026 10.18% VaR (10) 7.1630 5.9499 4.8100 3.6682 3.1975 9.1820 7.6681 9.3712 9.9552 

 Avg60_VaR( 10) 7.2106 6.0141 6.0234 5.2130 4.4476 9.2310 7.6681 9.4377 8.2623 

 VaR (30) 12.4067 10.3055 8.3312 6.3535 5.5383 15.9037 13.2815 16.1730 17.9358 

 Avg60_VaR( 30) 12.4892 10.4166 10.4328 9.0291 7.7035 15.9885 13.2815 16.2798 14.0123 

          

2032 7.95% VaR (10) 8.1548 7.9681 7.4611 6.5049 6.1632 11.0001 8.9494 11.1956 9.7387 

 Avg60_VaR( 10) 8.1839 7.9269 8.5756 7.7365 6.9370 11.0707 8.9494 11.5026 11.0375 

 VaR (30) 14.1245 13.8012 12.9230 11.2668 10.6751 19.0528 15.5008 19.5351 16.0063 

 Avg60_VaR( 30) 14.1750 13.7298 14.8534 13.4000 12.0152 19.1750 15.5008 20.1867 18.7928 
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Annexure 2: Evaluating Competing VaR Models for Each Selected GOI Bond 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Static Model Risk Metric with � 
GOI Bond Description of Estimate Full  Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 

2004-12.50% Backtesting 3 3 6 5 5 1 2 1 1 

 Loss 1 0.1875 0.1996 0.4380 0.4184 0.4049 0.0732 0.0892 0.0478 0.0487 

 Loss 2 3.1875 3.1996 6.4380 5.4184 5.4049 1.0732 2.0892 1.0478 1.0487 

             
2005 11.19% Backtesting 4 4 6 7 6 2 3 2 2 

 Loss 1 1.0013 1.0110 1.2892 1.1787 1.1242 0.5056 0.8195 0.4489 0.6339 

 Loss 2 5.0013 5.0110 7.2892 8.1787 7.1242 2.5056 3.8195 2.4489 2.6339 

             
2006-11.68% Backtesting 4 3 6 6 6 2 2 2 2 

 Loss 1 1.1005 1.0591 1.3122 1.1778 1.1068 0.6622 0.7588 0.5311 0.5292 

 Loss 2 5.1005 4.0591 7.3122 7.1778 7.1068 2.6622 2.7588 2.5311 2.5292 

             
2007 11.90% Backtesting 4 4 7 8 6 2 2 2 2 

 Loss 1 0.8474 0.8350 1.0239 0.8916 0.8108 0.5194 0.3676 0.3791 0.2421 

 Loss 2 4.8474 4.8350 8.0239 8.8916 6.8108 2.5194 2.3676 2.3791 2.2421 

             
2008 11.50% Backtesting 2 7 6 6 6 0 3 0 1 

 Loss 1 0.0271 1.1649 1.0182 0.5935 0.3724 0.0000 0.1908 0.0000 0.0836 

 Loss 2 2.0271 8.1649 7.0182 6.5935 6.3724 0.0000 3.1908 0.0000 1.0836 

             
2008 12% Backtesting 2 4 6 5 6 1 2 2 2 

 Loss 1 0.0087 0.2261 0.4764 0.2379 0.1179 0.0000 0.0633 0.2237 0.1628 

 Loss 2 2.0087 4.2261 6.4764 5.2379 6.1179 1.0000 2.0633 2.2237 2.1628 

             
2009 6.96% Backtesting 2 3 6 5 4 1 1 1 1 

 Loss 1 0.1188 0.2263 0.5096 0.3515 0.2568 0.0024 0.1086 0.0216 0.0443 

 Loss 2 2.1188 3.2263 6.5096 5.3515 4.2568 1.0024 1.1086 1.0216 1.0443 

             
2009-11.99% Backtesting 3 3 6 5 5 1 1 1 1 

 Loss 1 0.2066 0.3215 0.5654 0.4112 0.3166 0.0299 0.2047 0.0779 0.0647 

 Loss 2 3.2066 3.3215 6.5654 5.4112 5.3166 1.0299 1.2047 1.0779 1.0647 

             
2010 6.20% Backtesting 1 3 5 6 5 0 1 0 1 

 Loss 1 0.0161 0.1124 0.4082 0.2268 0.1308 0.0000 0.0260 0.0000 0.0026 

 Loss 2 1.0161 3.1124 5.4082 6.2268 5.1308 0.0000 1.0260 0.0000 1.0026 

             
2010 7.55% Backtesting 1 3 5 6 6 0 1 0 1 

 Loss 1 0.0159 0.1258 0.4132 0.2236 0.1239 0.0000 0.0454 0.0000 0.0076 

 Loss 2 1.0159 3.1258 5.4132 6.2236 6.1239 0.0000 1.0454 0.0000 1.0076 

             
2011 9.39% Backtesting 1 3 5 5 6 0 2 0 1 

 Loss 1 0.0010 0.1771 0.4492 0.2229 0.1104 0.0000 0.0529 0.0000 0.0025 

 Loss 2 1.0010 3.1771 5.4492 5.2229 6.1104 0.0000 2.0529 0.0000 1.0025 
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Annexure 2: Evaluating Competing VaR Models for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Static Model Risk Metric with � 
GOI Bond Description of Estimate Full  Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 

2011A 11.50% Backtesting 2 4 6 6 6 0 2 0 2 

 Loss 1 0.0048 0.2303 0.4812 0.2388 0.1181 0.0000 0.0709 0.0000 0.0040 

 Loss 2 2.0048 4.2303 6.4812 6.2388 6.1181 0.0000 2.0709 0.00000 2.0040 

        
2012 6.85% Backtesting 1 6 6 6 6 0 3 0 1 

 Loss 1 0.0000 0.2866 0.5468 0.2895 0.1691 0.0000 0.1093 0.00000 0.0352 

 Loss 2 1.0000 6.2866 6.5468 6.2895 6.1691 0.0000 3.1093 0.00000 1.0352 

        
2012 7.40% Backtesting 1 6 6 6 6 0 3 0 1 

 Loss 1 0.0002 0.3013 0.5510 0.2893 0.1662 0.0000 0.1087 0.0000 0.0324 

 Loss 2 1.0002 6.3013 6.5510 6.2893 6.1662 0.0000 3.1087 0.0000 1.0324 

        
2012 - 11.03% Backtesting 2 6 6 6 7 0 2 0 2 

 Loss 1 0.0019 0.3269 0.5453 0.2737 0.1407 0.0000 0.1314 0.0000 0.0162 

 Loss 2 2.0019 6.3269 6.5453 6.2737 7.1407 0.0000 2.1314 0.0000 2.0162 

        
2013-7.27% Backtesting 1 7 6 6 6 0 3 0 2 

 Loss 1 0.0050 0.7498 0.8081 0.4783 0.3134 0.0000 0.1498 0.0000 0.0781 

 Loss 2 1.0050 7.7498 6.8081 6.4783 6.3134 0.0000 3.1498 0.0000 2.0781 

        
2013 9.81% Backtesting 1 6 6 6 7 0 3 0 1 

 Loss 1 0.0062 0.5711 0.6891 0.3732 0.2195 0.0000 0.1447 0.0000 0.0283 

 Loss 2 1.0062 6.5711 6.6891 6.3732 7.2195 0.0000 3.1447 0.0000 1.0283 

        
2014 6.72% Backtesting 1 6 6 6 6 0 3 0 1 

 Loss 1 0.0003 0.3640 0.5951 0.3263 0.1994 0.0000 0.1416 0.0000 0.0431 

 Loss 2 1.0003 6.3640 6.5951 6.3263 6.1994 0.0000 3.1416 0.0000 1.0431 

        
2014 7.37% Backtesting 0 7 6 5 6 0 2 0 2 

 Loss 1 0.0000 0.9984 0.9468 0.5777 0.3881 0.0000 0.1481 0.0000 0.1247 

 Loss 2 0.0000 7.9984 6.9468 5.5777 6.3881 0.0000 2.1481 0.0000 2.1247 

        
2015 9.85% Backtesting 2 8 6 6 5 0 3 0 3 

 Loss 1 0.0309 1.3841 1.1657 0.7137 0.4847 0.0000 0.2659 0.0000 0.1737 

 Loss 2 2.0309 9.3841 7.1657 6.7137 5.4847 0.0000 3.2659 0.0000 3.1737 

    
2015 10.47% Backtesting 2 7 6 6 5 0 3 0 2 

 Loss 1 0.0227 1.1268 0.9980 0.5860 0.3735 0.0000 0.1720 0.0000 0.0839 

 Loss 2 2.0227 8.1268 6.9980 6.5860 5.3735 0.0000 3.1720 0.0000 2.0839 

    
2016 10.71% Backtesting 2 7 6 6 6 0 3 0 2 

 Loss 1 0.0387 1.4759 1.2274 0.7774 0.5467 0.0000 0.2590 0.0000 0.0935 

 Loss 2 2.0387 8.4759 7.2274 6.7774 6.5467 0.0000 3.2590 0.0000 2.0935 
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Annexure 2: Evaluating Competing VaR Models for Each Selected GOI Bond (Concld.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator)
Static Model Risk Metric with � 

GOI Bond Description of Estimate Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling
2017 7.46% Backtesting 2 7 7 6 4 0 3 0 2 

 Loss 1 0.0404 1.9996 1.8892 1.6647 1.5007 0.0000 0.3675 0.0000 0.1049 

 Loss 2 2.0404 8.9996 8.8892 7.6647 5.5007 0.0000 3.3675 0.0000 2.1049 

        

2017 8.07% Backtesting 2 8 7 6 4 0 2 0 2 

 Loss 1 0.0400 1.8312 1.5962 1.2551 1.0537 0.0000 0.3130 0.0000 0.1118 

 Loss 2 2.0400 9.8312 8.5962 7.2551 5.0537 0.0000 2.3130 0.0000 2.1118 

    

2018 6.25% Backtesting 2 6 7 6 4 0 2 0 2 

 Loss 1 0.0317 2.1930 2.2607 2.1885 2.0744 0.0000 0.3999 0.0000 0.0818 

 Loss 2 2.0317 8.1930 9.2607 8.1885 6.0744 0.0000 2.3999 0.0000 2.0818 

        

2019 10.03% Backtesting 2 8 7 6 5 0 2 0 2 

 Loss 1 0.0626 2.0505 2.1419 2.1280 2.0516 0.0000 0.2459 0.0000 0.0519 

 Loss 2 2.0626 10.0505 9.1419 8.1280 7.0516 0.0000 2.2459 0.0000 2.0519 

        

2020 10.70% Backtesting 2 8 7 6 7 0 3 0 1 

 Loss 1 0.0678 2.0705 2.2394 2.3127 2.2777 0.0000 0.2187 0.0000 0.0013 

 Loss 2 2.0678 10.0705 9.2394 8.3127 9.2777 0.0000 3.2187 0.0000 1.0013 

        

2022 8.35% Backtesting 2 7 8 8 7 0 2 0 2 

 Loss 1 0.1059 2.4027 3.1476 3.8989 4.1420 0.0000 0.3836 0.0000 0.1019 

 Loss 2 2.1059 9.4027 11.1476 11.8989 11.1420 0.0000 2.3836 0.0000 2.1019 

        

2023 6.30% Backtesting 2 7 7 7 6 0 2 0 1 

 Loss 1 0.3238 2.8322 4.0863 5.4880 5.9615 0.0000 0.7997 0.0000 0.2969 

 Loss 2 2.3238 9.8322 11.0863 12.4880 11.9615 0.0000 2.7997 0.0000 1.2969 

        

2026 10.18% Backtesting 4 7 8 5 5 0 4 0 1 

 Loss 1 0.5182 2.9683 3.6103 4.9865 5.4668 0.0000 0.7024 0.0000 0.2346 

 Loss 2 4.5182 9.9683 11.6103 9.9865 10.4668 0.0000 4.7024 0.0000 1.2346 

        

2032 7.95% Backtesting 8 9 8 7 3 2 4 2 2 

 Loss 1 5.1036 8.3629 6.7324 8.0790 8.8084 0.7251 3.8229 0.69525 0.8605 

 Loss 2 13.1036 17.3629 14.7324 15.0790 11.8084 2.7251 7.8229 2.69525 2.8605 
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