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Abstract: Value-at-Risk (VaR) has been widely promoted by the Bank for International 
Settlement (BIS) as well as central banks of all countries as a way of monitoring and 
managing market risk and as a basis for setting regulatory minimum capital standards. 
The revised Basle Accord, implemented in January 1998, makes it mandatory for banks 
to use VaR as a basis for determining the amount of regulatory capital adequate for 
covering market risk. For market participants like Banks and Primary Dealers (PDs) in 
the Indian financial sector, it has become imperative to use VaR methods to calculate 
the regulatory capital charge required. The RBI has issued guidelines for PDs. We have 
adopted three categories of VaR methods, viz., Variance-Covariance (Normal) methods 
including Risk-Metric, Historical Simulation (HS) and Tail-Index Based approach. The 
Zero-Coupon Yield Curve (ZCYC) compiled by National Stock Exchange (NSE) has 
been used to price the bonds as well as portfolios. Estimated VaRs are validated by 
carrying out ‘back testing’ based on last one year’s data. Empirical results show that 
normal methods, in particularly the Risk-Metric approach, underestimate VaR numbers 
substantially resulting to too many failures in backtesting. Historical simulation 
provides more accurate VaR estimates, and indicates capital charge higher than those 
obtained through normal methods. The tail-index (Hill’s estimator) based method also 
perform quite well though at times it provides too conservative VaR estimates – higher 
than all other competing VaR models considered here and occasions of VaR violation 
in backtesting are less than expected number for each bond/portfolio.  
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Value at Risk: Concept and Its Implementation for Indian Banking System 
 

1. Introduction 
 
Financial institutions are subject to different types of risk, such as, business risk, 
strategic risk, financial risk and financial risk is one that is caused by movements in 
financial markets (van den Goorbergh, 1999). The literature distinguishes four major 
categories of financial risk, viz., credit risk, operational risk, liquidity risk and market 
risk. Credit risk generally relates to the potential loss due to the default on the part of 
the counterparty to meet its obligations at designated time. It has three basic 
components: credit exposure, probability of default and loss in the event of default. 
Operational risk takes into account the errors that can be made in instructing 
payments or settling transactions, and includes the risk of fraud and regulatory risks. 
Liquidity risk is caused by an unexpected large and stressful negative cash flow over a 
short period. If a firm has highly illiquid assets and suddenly needs some liquidity, it 
may be compelled to sell some of its assets at a discount. Finally, market risk estimates 
the loss of an investment portfolio due to the changes in prices of financial assets and 
liabilities (market conditions).  
 
Monitoring market risk assumes importance to banks and financial institutions, as the 
values of investment portfolios they hold undergo changes as and when market 
conditions change. Measuring market risk is important from the viewpoint of devising 
risk management strategy and for assessing total financial risk (which includes all 
different types of risks) of an investment portfolio held by a bank or financial 
institution.  There is a need to provide capital charge for this category of risk also so 
that the banks/institutions remain in business in adverse market conditions. 
Recognising this point the Bank for International Settlements (BIS) has included 
market risk as a part of the total risk for which capital has to be provided by a bank.   
 
In recent years, Value at Risk (VaR) has become the standard measure that financial 
analysts use to quantify the market risk. VaR is commonly defined as the maximum 
potential fall in value of a portfolio (i.e. loss in portfolio) of financial instruments with 
a given probability over a certain horizon. In simpler words, it is a number that 
indicates how much a financial institution can lose with probability, say p, over a 
given time horizon. The great popularity that this instrument has achieved among 
financial practitioners is essentially due to its conceptual simplicity: VaR reduces the 
(market) risk associated with any portfolio to just one number that is the loss 
associated with a given probability and horizon. 
 
VaR measures can have many applications. It evaluates the performance of risk takers 
and satisfies the regulatory requirements. VaR has become an indispensable tool for 
monitoring risk and an integral part of methodologies that allocate capital to various 
lines of business. Today regulators all over the globe have been forcing institutions to 
adopt internal models and calculate the required capital charge based on VaR 
methodologies. In particular, the Basel Committee on Banking Supervision (1996) of 
the BIS imposes requirements on banks to meet capital requirements based on the VaR 
estimated through internal model approach.  Under this approach, regulators do not 
provide any specific VaR measurement technique to their supervised banks – the 
banks are free to use their own model. But to eliminate the possible inertia of 
supervised banks to underestimate VaR so as to reduce the capital requirements, BIS 
has prescribed certain minimum standard of VaR estimates and also certain tests, such 
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as backtesting, of VaR models. If VaR model of a bank fails in backtesting, a penalty is 
imposed resulting to higher capital charge.  
 
Thus, providing accurate estimates of VaR is of crucial importance for all stakeholders. 
If the underlying risk is not properly estimated, this may lead to a sub-optimal capital 
allocation with consequences on the profitability or the financial stability of the 
institutions. A bank would like to pick up a model that would generate as low VaR as 
possible but pass through the backtesting. 
 
From a statistical point of view, VaR estimation entails the estimation of a quantile of 
the distribution of returns. Though, there has been voluminous work done on VaR in 
financial market all over the world, the task of estimating/forecasting VaR still 
remains challenging. The major difficulty lies in modelling/approximating the return 
distribution, which generally is not normal (being skewed and/or having fatter tails 
than normal distribution). Available VaR models can be classified into four broad 
categories: the historical simulation method, the Monte Carlo simulation method, 
modelling return distribution (including the variance/covariance method, which 
assumes normality of the return distribution, and methods under Extreme Value 
Theory (EVT). All these VaR estimation methods adopt the classical approach: they 
deal with the statistical distribution of time series of returns.  
 
The main objective of this paper is to discuss issues regarding implementation of VaR 
models for the portfolios of Govt. of India (GOI) securities held by banks and Primary 
Dealers (PDs). Reserve Bank of India (RBI), the Central Bank in the country, has 
issued detailed guidelines on market risk for banks on the basis of the BIS framework 
though it has not become mandatory for banks to use VaR models1. However, RBI has 
issued detailed guidelines to Primary Dealers (PDs) for mandatory implementation of 
VaR methods while calculating the capital charge required2. We have restricted our 
analysis to only application of VaR methodologies to GOI bonds and have used the 
NSE Zero Coupon Yield Curve (ZCYC) parameters to value the bonds as well as the 
portfolios of bonds so as to construct historical price data for different bonds/portfolios.   
 
The paper has been designed as follows: Section 2 presents a brief review of literature 
on the subject, Section 3 discusses the theoretical and methodological issues 
concerning VaR, Section 4 focuses on data and construction of portfolio, Section 5 
discusses empirical results and Section 6 concludes. 
 
2. Literature Review 
 
There has been large volume of literature on VaR methodologies as well as on its 
implementation. The concept received tremendous response from banks all over the 
world. Banks management can apply the VaR concept to set capital requirements 
because VaR models allow for an estimate of capital loss due to market risk (see Duffie 
and Pan, 1997; Jackson, Maude and Perraudin, 1997; Jorion, 1997; Saunders, 1999;  
Friedmann and Sanddrof-Kohle, 2000; Hartmann-Wendels, et al., 2000; Simons, 2000, 
among others).  
 

                                                 
1 RBI circular BP./21.04.103/2001 dated March 26, 2002. 
2 RBI circular IDMC.PDRS.PDC.3/03.64.00/2000-01 dated December 11, 2000. 
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The computation of volatility is the most important aspect of any VaR estimation. The 
volatility estimation should take care of the most stylized facts of any financial asset 
class – the important ones being fat tailed property, volatility clustering and 
asymmetry of return distribution. Once these issues are identified in the distribution, 
then calculating volatility is easy. Today GARCH family models have been 
increasingly used by researchers to model volatility. An important documentation in 
this regard has been the J P Morgan’s RiskMetrics that applied declining weights to 
past returns to compute volatility with a decay factor 0.94 which is a variant of 
IGARCH. Other measures of volatility, which differs from the estimation of return 
variance, include Garman and Klass (1980), and Gallant and Tauchen (1998), who 
incorporate daily high and low quotes, and Andersen and Bollerslev (1998) and 
Andersen, et al. (1999), who use average intraday squared returns to estimate daily 
volatility. 
 
Several studies such as Danielsson and de Vries (1997), Christoffersen (1998), and 
Engle and Manganelli (1999) have found significant improvements possible when 
deviations from the relatively rigid RiskMetrics framework are explored.  Choosing an 
appropriate VaR measure is an important and difficult task, and risk managers have 
coined the term Model Risk to cover the hazards from working with potentially mis-
specified models. Beder (1995), for example, compares simulation-based and 
parametric models on fixed income and stock option portfolios and finds apparently 
economically large differences in the VaRs from different models applied to the same 
portfolio. Hendricks (1996) finds similar results analyzing foreign exchange portfolios. 
In Indian context, Darbha (2001) made a comparative study of three models – Normal, 
HS and Extreme Value Theory while studying the portfolio of Gilts held by PDs.  
 
3. Theoretical Issues 
 
As stated earlier, VaR is the maximum amount of money that may be lost on a 
portfolio over a given period of time, with a given level of confidence and typically 
calculated for a one-day time horizon with 95% or 99% confidence level. Holding 
period is one of the most key elements in VaR estimation and the same is chosen on 
the basis of time that an organization would take to liquidate its position if the need 
arises. In a very liquid market, 1-day may holding period seem to be justified while in 
an illiquid market; it may take more than 10 days to liquidate the portfolio. Hence the 
capital charge would be different for different holding period.  
 
BIS requires that VaR be computed daily by Banks, using a 99th percentile, one-tailed 
confidence interval with a minimum price shock equivalent to ten trading days 
(holding period) and the model incorporate a historical observation period of at least 
one year. The capital charge for a bank that uses a proprietary model will be higher of 
(i) The previous day’s VaR and (ii) an average of the daily VaR of the preceding sixty 
business days, multiplied by a multiplication factor. The multiplication factor may be 3 
and this may go up if the regulators feel that 3 is not sufficient to account for potential 
weaknesses in the modeling process. 
 
In the case of PDs, RBI prescribes all these above criteria except that (i) minimum 
holding period would be thirty trading days; (ii) the minimum length of the historical 
observation period used for calculating VaR should be one year or 250 trading days. 
For PDs who use a weighting scheme or other methods for the historical observation 
period, the "effective" observation period must be at least one year (that is, the 
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weighted average time lag of the individual observations cannot be less than 6 
months); and (iii) the multiplication factor is presently fixed at 3.3. 

 
The weaknesses may be due to (a) market prices often display patterns 
(heteroskedastic) that differs from the statistical simplifications used in modeling, (b) 
past not being always a good approximation of the future (October 1987 crash 
happened that did not have parallel in historical data), (c) most of the models take ex-
post volatility and not ex-ante, (d) VaR estimations normally is based on end-of-day 
positions and not take into account intra-day risk, (e) models can not adequately 
capture event risk arising from exceptional market circumstances. Since VaR heavily 
relies on the availability of historical market price data on the portfolio to understand 
its effectiveness, it would be appropriate to use the long historical data to see if the 
stress conditions can be replicated.  

 
While simple VaR models can be implemented for equity and foreign exchange 
markets as it is not difficult to construct the return series based on actual price data 
from the secondary markets, it is difficult to use the same concept in fixed income 
securities. Bonds change their value everyday (assuming ceteris paribus) because of 
time to maturity come down everyday and hence the Present-Value (PV) changes. 
Hence a 10-year Government of India (GOI) paper today was not a 10-year paper one 
year back. If an investor would like to find out the VaR numbers for GS CG2011 
11.50% with last 3 years historical price data, logically he cannot take the actual 
trading price data from the secondary market to estimate the VaR numbers. Hence, the 
logic behind VaR is to consider today’s portfolio and find out what would have been 
its historical values (time series) and then construct the return series and then calculate 
the VaR numbers. Hence for estimation of VaR on fixed Income securities, there is no 
other way but to reconstruct the historical data using the time series of yield curves. 
And for doing the same, either one has to spend resources in establishing a system 
that will generate the yield curves time series using historical secondary market trades 
or use NSE ZCYC parameters which have been made available free of cost. NSE has 
developed the ZCYC using Nelson-Siegel functional form (Nelson and Siegel, 1987) 
and has created a database from January 1997. Because of parsimony we have used 
NSE ZCYC parameters to price the bonds and portfolios from 1997. 

 
Estimation of VaR for an individual bond is simple. But when we calculate the VaR of 
a portfolio, we need to find out the single price series of the portfolio using the 
historical yield curves. While constructing the portfolio, we have used the weights 
being the share of   the value of a component bonds in the total portfolio value. While 
constructing the historical price series of the portfolio, it is logical to assume that 
weights have remained as it is today. This is because VaR envisages to find out the 
possible maximum loss of a portfolio today in a given time horizon with a level of 
probability and hence the portfolio needs to be maintained as of today’s composition. 

 
3.1. Basic Statistics Related to VaR 

 
The portfolio consists of many securities and in our case we are concerned with only 
Gilts. The basic price equation of the portfolio can be written as follows: 

 
bondnnbondbondportfolio wwwice Pr*........Pr*Pr*Pr 2211 ����               ….. (1) 

 
and the return on the portfolio is at time defined as  
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where the sum is taken over n securities in the portfolio, wi denotes the proportionate 
value of the holding of security i at the end of day t. 
 
And the variance of the portfolio should be written as  
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where �ij,t+1 is the covariance and �ij,t+1 is the correlation between security i and j on 
day t+1 and for �ij,t+1 = 1 and we write �ij,t+1 = �2i,t+1 for all i. 

 
The VaR of the portfolio is simply 

1
p1tF,P1tPF,

p F*σVaR �

�
� �                               ….. (4) 

 
where Fp-1 is the p’th quantile of the rescaled portfolio returns. 

 
3.2. Select VaR Methodologies 

 
There are few VaR methodologies that are very simple and easy to implement, to 
name a few are (a) Normal (parametric using variance and covariance approach) and 
(b) Historical simulation. Cleverly these simple methods have been extended with 
application of weights – recent events are given more weight and past is given less. 
However, different people have used different weighting methodologies. Riskmetrics 
has used ‘exponentially moving average’ where the decay factor (�) has been 
considered as 0.94 while Boudoukh, et al. (1997) fixed it at 0.98. We will discuss all 
these issues shortly and calculate the VaR number and see how they are comparable. 

 
There are also complex methods like EVT and Expected Shortfalls that require higher 
computing skills but not difficult to implement. EVT has two lines of thought –          
(a) simpler being the block maxima/minima and generalized extreme value in a 
Pareto optimality framework and (b) the Hill estimator and modeling both sides of the 
tail separately.  

 
3.2.1. Variance-Covariance (Normal) Method 

 
The Variance-Covariance (Normal) method is the easiest of the VaR methodologies. 
Since we are considering Gilts for our analysis, it is known that interest rate movement 
in sovereign bond market is unidirectional at any point of time. If the interest rate 
changes, it affects the price of all bonds in the similar direction. It will not happen, that 
a 10-year paper will increase while a 15-year paper will decrease due to an interest rate 
cut, may be the fall or rise will not be linear. In case of equities, the price of a stock 
may increase while that of other will fall and there we will surely need correlation 
coefficient while calculating the volatility of the portfolio. For bonds, the plain 
standard deviation would be useful to calculate the require VaR. But whether to take 
static variance of the entire time series or conditional variance is a point for debate. It 
is argued that variance changes over time horizons and hence we should not rely on 
unconditional variance for measuring VaR. We will ok at both the options.  

 
The normal method assumes normality in the financial time series. In recent past 
interest in econometrics and empirical finance has revolved around modeling the 
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temporal variation in financial market volatility. Probability distributions for asset 
returns often exhibit fatter tails than the standard normal, or Gaussian, distribution. 
The fat tail phenomenon is known as excess kurtosis. Time series that exhibit a fat tail 
distribution are often commonly referred to as leptokurtic. In addition, financial time 
series usually exhibit a characteristic known as volatility clustering, in which large 
changes tend to follow large changes, and small changes tend to follow small changes. 
In either case, the changes from one period to the next are typically of unpredictable 
sign. Large disturbances, positive or negative, become part of the information set used 
to construct the variance forecast of the next period's disturbance. In this manner, large 
shocks of either sign are allowed to persist, and can influence the volatility forecasts 
for several periods. Volatility clustering, or persistence, suggests a time-series model 
in which successive disturbances are serially correlated.  
 
The volatility-clustering phenomenon can be captured through modelling conditional 
heteroscadasticity, assuming normality of the conditional distribution of return. A 
useful class of such time series model includes ARCH/GARCH or some of their 
further generalisation. This class of models not only handle volatility clustering but 
also accounts to a great extent the fat tail effect (or excess kurtosis) typically observed 
in financial data. The popular Risk-Metric model (J.P.Morgan, 1996) is a simplified 
form of heteroskedasticity. The Risk-Metric approach actually model conditional 
variance as a weighted average of past variance and past returns, where exponential 
weighting scheme for past returns is used as follows.  

2
kt

1t

0k

k2
0

t2
t

2
1t

2
t rλλ)(1σλrλ)(1λσσ

�

�

�

� �������                            ….. (5) 

where 2
tσ and rt denote conditional variance and return at time t, respectively; and the 

parameter �, known as decay factor, satisfy 0 < � <1. 
 
For daily data, the value of the decay parameter in the RiskMetric approach is 
generally fixed at �=0.94 (van den Goorberg and Vlaar, 1999).  
 
3.2.2. Historical Simulation Method 

 
Historical simulation approach provides some advantages over the normal method, as 
it is not model based, although it is a statistical measure of potential loss. The main 
benefit is that it can cope with all portfolios that are either linear or non-linear. The 
method does not assume any specific form of the distribution of price change/return. 
The method captures the characteristics of the price change distribution of the 
portfolio, as VaR is estimated on the basis of actual distribution. This is very 
important, as the HS method would be on the basis of available past data. If the past 
data does not contain highly volatile periods, then HS method would not be able to 
capture the same. Hence, HS should be applied when we have very large data points 
that are sufficiently large to take into account all possible cyclical events. HS method 
takes a portfolio at a point of time and then revalues the same using the historical price 
series. Once we calculate the daily returns of the price series, then sorting the same in 
an ascending order and find out the required data point at desired percentiles. Linear 
interpolation can be used if the required percentile falls in between 2 data points. The 
moot question is what length of price series should be used to compute VaR using HS 
method and what we should do if the price history is not available. It has to be kept in 
mind that HS method does not allow for time-varying volatility. 
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Another variant of HS method is a hybrid approach put forward by Boudhoukh, et al. 
(1997), that takes into account the exponential declining weights as well as HS by 
extimating the percentiles of the return directly, using declining weights on past data. 
As described by Boudhoukh et al. (1997, pp. 3),  “the approach starts with ordering the 
returns over the observation period just like the HS approach. While the HS approach 
attributes equal weights to each observation in building the conditional empirical 
distribution, the hybrid approach attributes exponentially declining weights to 
historical returns”. The process is simplified as follows: 

� Calculate the return series of past price data of the security or the portfolio 
from t-1 to t.  

� To each most recent K returns: R(t), R(t-1), ……R(t-K+1) assign a weight 
1kkkk λ)]λ/(1λ)λ,.....[(1)]λ/(1λ)[(1)],λ/(1λ)[(1 �

������  respectively. The 
constant )]λ/(1λ)[(1 k��  simply ensures that the weights sum to 1. 

� Sort the returns in ascending order. 
� In order to obtain p% VaR of the portfolio, start from the lowest return and 

keep accumulating the weights until p% is reached. Linear interpolation may 
be used to achieve exactly p% of the distribution.  

� In many studies lambda (�) has been used as 0.98. 
 
3.2.3. Extreme Value Theory – Hill’s Estimator and VaR Estimation 
 
In financial literature, it is widely believed that high frequency return has fatter tails 
than can be explained by the normal distribution. The tail-index measures the amount 
of tail fatness of return distribution and fit within the extreme value theory (EVT). One 
can therefore, estimate the tail-index and measure VaR based on that. The basic 
premises of this idea stems from the result that the tails of every fat-tailed distribution 
converge to the tails of Pareto distribution. The upper tail of such a distribution can be 
modeled as, 
 
Prob[X > x] ≈ Cα |x|–α    (i.e. Prob[X � x] ≈ 1 - Cα |x|-α);   x > C                                ….. (6)                                    
 
Where, C is a threshold above which the Pareto law holds; |x| denotes the absolute 
value of x and the parameter � is the tail-index.  
 
Similarly, lower tail of a fat-tailed distribution can be modeled as 
 
Prob[X > x] ≈1 - Cα |x| –α    (i.e. Prob[X � x] ≈ Cα |x| -α);   x < C                               ….. (7)   
 
Where, C is a threshold below which the Pareto law holds; |x| denotes the absolute 
value of x and the parameter � is the tail-index.  
      
In practice, observations in upper tail of the return distribution are generally positive 
and those in lower tail are negative. Thus, both of equation (6) and equation (7) have 
importance in VaR measurement. The holder of a short financial position suffers a loss 
when return is positive and therefore, concentrates on upper-tail of return distribution 
(i.e. equation 6) while calculating his VaR (Tsay, 2002, pp. 258). Similarly, the holder of 
a long financial position would model the lower-tail of return distribution (i.e. use 
equation 7) as a negative return makes him suffer a loss.   
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From equation (6) and (7), it is clear that the estimation of VaR is crucially dependent 
on the estimation of tail-index �. There are several methods of estimating tail-index 
and in the present paper, we consider two approaches, viz. (i) Hill’s (1975) estimator 
and (ii) the estimator under ordinary least square (OLS) framework suggested by van 
den Goorbergh (1999). We consider here the widely used Hill’s estimator, a discussion 
on which is given below. 
 
Hill’s Estimator 
 
For given threshold C in right-tail, Hill (1975) introduced a maximum likelihood 
estimator of γ = 1/α as 

�
�

�
�

�
�
�

�
�

n

i

i

C
X

n 1

log1
�̂                                                                                                              ….. (8) 

where Xi’s, i=1,2, …..,n are n observations (exceeding C) from the right-tail of the 
distribution.  
 
In practice, however, C is unknown and needs to be estimated. If sample observations 
come from Pareto distribution, then C would be estimated by the minimum observed 
value, the minimum order statistic. However, here we are not modeling complete 
portion of Pareto distribution. We are only dealing with a fat-tailed distribution that 
has right tail that is approximated by the tail of a Pareto distribution. As a 
consequence, one has to select a threshold level, say C, above which the Pareto law 
holds. In practice, equation (8) is evaluated based on order statistics in the right-tail 
and thus, the selection of the order statistics truncation number assumes importance. 
In other words, one needs to select the number of extreme observations n to 
operationalise equation (8). Mills (1999, pp. 186) discusses a number of available 
strategies for selecting n and a useful technique for the purpose is due to Phillips, et al. 
(1996). This approach makes an optimal choice of n that minimises the MSE of the 
limiting distribution of �̂ . To implement this strategy, we need estimates of � for 
truncation numbers n1 = N� and n2=N�, where 0 < � < 2/3 < 	 < 1. Let j�̂ be the 
estimate of � for n =nj, j=1,2. Then the optimal choice for truncation number is n = [� 
T2/3], where � is estimated as 3/2

2121 |)ˆˆ)(/)(2/ˆ(|ˆ ���� �� nT . Phillips et al. (1996) 
recommended setting � =0.6 and 	 = 0.9 (see Mills, 1999, pp. 186).   
 
Estimating VaR Using Hill’s Estimator 
 
Once tail-index α is estimated, the VaR can be estimated as follows (van den 
Goorbergh and Vlaar, 1999). Let p and q (p < q) be two tail probabilities and xp and xq 
are corresponding quantiles. Then p ≈ Cα (xp)-α and q ≈ Cα (xp)-α indicating that xp ≈ xq 
(q/p)1/α. Assuming that the threshold in the left-tail of the return distribution 
corresponds to the  m-th order statistics (in assending order), the estimate of xp be 

�̂

)(p np
mRx̂ ��

�

�
��
�

�
� m                                                                                                                 ….. (9) 

where R(m) is the m-th order statistics in the assending order of n observations chosen 
from tail of the underlying distribution; p is the given confidence level for which VaR 
is being estimated; �̂ is the estimate of γ. 
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The estimate of VaR (with meanings of notations as defined above) would be 
p

t| 1tV̂
�

 = - Wt px̂ ; px̂ is estimate of quantile of return distribution                             ….(10)                                    
 
or 

p
t| 1tV̂

�
 = Wt [1 – exp( px̂ )]; px̂ is estimate of quantile of log-return distribution      ….(11)                                     

 
The methodology described above estimates tail-index and VaR for right tail of a 
distribution. To estimate the parameters for left tail, we simply multiply the 
observations by –1 and repeat the calculations.    
 
3.3. Estimating Multi-Period VaR from one-period VaR 
 
In practice above methods are used to estimate VaR numbers daily based on one-day 
holding period returns. However, for computing capital charge, we need the VaR 
numbers for longer holding period, say 10-days or 30-days. Using the estimates of 1-
period VaR, k-period VaR can be estimated by following approximation; 

VaR(k) � 
� �

� ���

�
�

� �

ModelsVaRotherforVaR(1)k

αindextailthroughestimatedisVaR(1)ifVaR(1)kα

           .….(12) 

 
Note from equation (12) that, for the tail-index based VaR model, multi-period VaR 
VaR(k) depends upon VaR(1), k and the estimated tail index. In the cases of other VaR 
models, however, VaR(k) can be approximated based on only k and VaR(1). For these 
relationships one can verify that for given k, higher value of VaR(1) estimated through 
any VaR model other than tail-index, would indicate higher value of VaR(k). In other 
words, in this case if VaR(1) for  “portfolio 1” is higher than ‘portfolio 2” then VaR(k) 
for “portfolio 1” will also be higher than VaR(k) for “portfolio 2”. In the case of tail-
index based VaR estimates, however, this does not holds in general.  Because, the 
parameter � also plays an important role here.  
 
3.4. Evaluation of VaR Models - Back Testing 
 
Any method used for VaR estimation need to satisfy the criteria of back testing using 
the current data set. Suppose we calculate the VaR numbers with probability level 
0.01. We can check the accuracy of a VaR model by counting the number of times VaR 
estimate fails (i.e. actual loss exceeds estimated VaR), say in 100 days.  If we want to 
calculate VaR of a one-day holding period with 99% confidence level, logically, we are 
allowing 1 failure in 100 days. But if the number is more than 1, then the model is 
under predicting VaR numbers and if we find less number of failures the model is 
over predicting. The Basle Committee provides guidelines for imposing penalty 
leading to higher multiplication factor, when the number of failure is too high. 
However, no penalty is imposed when the failure occurs with less frequency than the 
expected number. Thus, selection of VaR model is a very difficult task. A model, 
which overestimates VaR, may result in reduced number of failure but increase the 
required capital charge directly. On the other hand if a underestimates VaR numbers, 
the number failures may be too large which ultimately increases the multiplying factor 
and hence the required capital charge. Thus an ideal VaR model would be the one, 
which produces VaR estimates, as minimum as possible and also pass through the   
backtesting. 
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The BIS requires that models must incorporate past 250 days data points (one year 
assuming Saturday/Sundays being non-trading days). In Indian market, RBI has 
issued guidelines for PDs to use one year and not less than 250 trading days for VaR 
estimation. Since Saturday is a trading day in bond market, we have taken 290 days (a 
period of about one year) for our analysis. Accordingly the capital charge is the higher 
of (i) the previous day's value-at-risk number measured according to the above 
parameters specified in this section and (ii) the average of the daily value-at-risk 
measures on each of the preceding sixty business days, multiplied by a multiplication 
factor prescribed by RBI (3.30 presently for PDs).  
 
To do the back testing, we can think of an indicator variable I(t) which is one if return 
of the day is more than the VaR for the previous day and zero otherwise. Average of 
the indicator variable should be our VaR percent.  
 
4. Data  
 
We have used the GOI bonds outstanding as on June 23, 2003 for our analysis. As of 
March 2003, Govt. of India had an outstanding issue size of around Rs.6,739,0503 
million and some more amount has already been borrowed by the Government during 
April – June 2003. The ownership pattern of GOI securities is given in Table 1. As can 
be seen from Table 1, commercial banks hold about 61% per cent of GOI securities in 
recent years. We have assumed that about 65% of the securities are with the banking 
system since in recent years banks have been heavily investing in Gilts due to low 
credit off-take and the same should be about Rs.4,380,000 million.  

 
Table 1: Ownership Pattern of GOI Securities  

                                                             (in per cent of outstanding Rupees at End-March)
End-March of the Year 

Category of Holders 1991 1995 1999 2001 
Reserve Bank of India 24.80 2.51 10.90 9.20 
Commercial Banks 55.14 68.78 58.92 60.99 
LIC 13.46 17.18 18.22 15.52 
EPF Scheme 0.90 0.45 1.37 1.34 
Others  5.70 11.08 10.59 12.95 
Total  100.00 100.00 100.00 100.00 

Source: Derived based on Data in Handbook of Statistics, 2002-03, Reserve Bank of India.  
            

As of May 2003, the investment-deposit ratio of commercial banks stand about 53.8% 
meaning that more than 50% of their total assets are in investments and as seen in 
Table 1, commercial banks also hold a major part of GOI Securities. The capital and 
reserves of all scheduled commercial banks as on March 31, 2002 stood at Rs.881,860 
million. It would be worthwhile to estimate VaR taking the full hypothetical portfolio 
of the Banking system and see how much capital charge is required. 
 
Our empirical analysis relates to (i) two representative portfolios of GOI bonds, one 
for banks and another for PDs and (ii) certain selected individual GOI bonds. For 
applying uniform market conventions in valuation and simplicity, we have not taken 
T-Bills in our portfolio but it can be included as well.  Bonds have been selected from 
both illiquid as well as liquid baskets. Liquid bonds are those bonds where we observe 

                                                 
3 RBI Annual Report  2002-03, Table 11.9 (pp. 192) 
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trading regularly while illiquid bonds are infrequently traded. The liquid bonds 
identification has been done on the basis of FIMMDA guidelines. FIMMDA identifies 
liquid and semi liquid Government bonds regularly and puts up the same in its 
website (http://www.fimmda.org) and we have used the information while 
choosing/constructing GOI bonds/portfolios for our study. The representative 
portfolio we consider for entire banking sector holds almost all securities issued by the 
Govt., each having weight proportional to its outstanding issue size. For the 
representative portfolio for PDs, we assume that they hold all liquid bonds. Apart 
from these two portfolios, we consider 31 individual GOI bonds consisting of 15 liquid 
ones having a high cumulative trading share in total trading in Gilts, 12 semi-liquid 
and 4 illiquid bonds. These bonds spread across all maturity horizons spreading from 
2004 to 2032. Table 2 provides the trading behaviour of selected 31 bonds during last 
12 months period (July 2002 to June 2003). These 31 bonds account for about 81% of 
total trading volume in Gilts (Gsecs and T-Bills put together and about 83% of Gsecs 
only) during the period. We have used the daily trading data published by NSE in 
their website to calculate the liquidity distribution. The 15 liquid bonds appear in top 
20 in terms of trading value while the semi-liquid ones are in next top 20 in terms of 
trading value while next 4 are from the rest. The bonds have been picked up in a 
manner to accommodate all time horizons. We have not considered any T-bills though 
one may like to include them in the portfolio as well.  

Table 2: Liquidity Distribution of Selected Bonds (July 2002 – June 2003) 

GOI Bond No. of trades 
Traded value in Rs. 

Million Percentage to Total 
(A). Liquid Bonds 

2017 8.07 21912 1282453.13 10.76 
2012 7.40 21174 1252126.56 10.50 
2013 9.81 15214 886534.39 7.44 
2015 9.85 13466 766462.50 6.43 
2017 7.46 12594 730501.99 6.13 

2011A 11.5 10800 690248.67 5.79 
2011 9.39 11132 667979.84 5.60 
2012 11.03 9146 528589.91 4.43 
2022 8.35 5902 387016.18 3.25 
2010 7.55 5344 337970.33 2.84 
2016 10.71 5051 309167.69 2.59 
2009 11.99 4392 298350.43 2.50 
2026 10.18 3215 228740.48 1.92 
2018 6.25 2905 207368.51 1.74 
2013 7.27 3035 201175.19 1.69 

(B). Semi-Liquid Bonds 
2004 12.50 1152 128627.58 1.08 
2012 6.85 1620 127391.35 1.07 
2019 10.03 1430 120540.60 1.01 
2014 7.37 1292 94864.07 0.80 
2008 12 801 67415.60 0.57 
2015 10.47 739 49810.76 0.42 
2032 7.95 701 48711.79 0.41 
2007 11.90 559 46340.00 0.39 
2014 6.72 457 39800.00 0.33 
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2009 6.96 607 38268.00 0.32 
2005 11.19 331 29070.00 0.24 
2023 6.30 431 28179.02 0.24 

(C). Illiquid Bonds 
2006 11.68 288 20050.00 0.17 
2010 6.20 138 13050.00 0.11 
2020 10.70 45 3210.00 0.03 
2007 11.50 8 1350.00 0.01 
Total of 31 

Bonds 155881 9631365 80.80* 
* The aggregate percentage may not exactly tally with bond-wise percentage totals due to 
rounding off.  
 
In order to estimate VaR for any portfolio of GOI bonds (including portfolio of a single 
bond) we need to construct time series on value/price of the portfolio. For the 
valuation of bonds, we used a total of 1874 yield curves (NSE ZCYC) from 01-01-1997, 
constructed by NSE daily basis. However, there was an apparent estimation problem 
on 23-05-1997 when suddenly the yields have dropped abnormally and next day 
increased abnormally. To ensure proper use of data, we had looked at the underlying 
market and did not observe any abnormal trading behaviour. Hence while using the 
data we considered the data point of 23-05-1997 as an estimation problem and 
replaced the same with the average value of previous day and next day model prices 
and calculated returns accordingly. The return series for any portfolio/bond is the 
continuously compounded return, which is derived as the first difference of daily 
observations on logarithm of prices. In this process, we get 1874 daily time series 
observations on return on each of 31 selected GOI bonds and two portfolios of GOI 
bonds (one for banks and another for PDs). 
 
5. Empirical Results 
 
5.1. Estimates of VaRs and Capital Charge 
 
In this section we report our estimated VaR figures and corresponding capital charges 
for each bond and portfolio considered in this study. All calculations are restricted to 
left-tail (one tailed) of return distribution. We first compute 1-day holding period VaR 
numbers for the last day in our sample as well as the average of 1-day VaRs in last 60 
days. All VaR estimates correspond to the probability level 0.01 (equivalently 
correspond to the confidence level 0.99). For a given security/portfolio, these two 
VaRs (i.e. 1-day VaR in last day and 60-day average of 1-day VaR) has been adjusted to 
arrive at VaR numbers corresponding to two alternative holding periods, viz., h=10-
days and h=30-days4. Required capital charges are calculated as the maximum of last 
day’s VaR and 3.3 times (as prescribed in the RBI circular for PDs) the average of 
previous sixty-days’ VaRs. Relevant results for the representative portfolios of PDs 
and banks are given in Table 3. Similar results for each selected bond are provided in 
Annexure 1. Results for each individual bond/portfolio are reported in four rows. 
While the first row provides 1-day holding period VaR estimates obtained by 

                                                 
4 As per the Basle Committee guideline (1996), capital charge should be derived based on VaR numbers 
for probability level 0.01 and holding periods 10-days. The VaR for 10-days holding period, however, 
are calculated based on 1-day VaR numbers computed daily basis. In India, guidelines issued to PDs 
maintain all attributes for capital charge computation except that VaR should have 30-days holding 
period (rather than 10-days holding period prescribed in the Basle Committee). 
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competing VaR models, the second row reports the average of 1-day VaR in last 60-
days in our database. Next two rows report the required capital charges for 10-days 
and 30-days holding periods.    
 
An important issue need to be mentioned here is that all VaR estimates provided in 
Table 3 and Annexure 1 are in percentage form, and thus, may actually be termed as 
the relative VaR (Wong, et al., 2003), which refers to the percentage of a portfolio value 
which may be lost after h-holding period with a specified probability (i.e. the 
probability level of VaR). The absolute VaR (i.e. the VaR expressed in Rupees term) 
can easily be computed by multiplying the portfolio values with the estimated relative 
VaR. Similarly, the capital charge can also be represented in two alternative forms, 
viz., relative (i.e. in percentage) or absolute (i.e. in rupees terms). The additional 
information we require to convert a relative VaR/capital charge in a day to a 
corresponding absolute term (i.e. rupees term) figures is the value of the portfolio. For 
example, from Table 3 we see that the capital charge corresponding to 10-days holding 
period for the portfolio for PDs in the last day in our dataset (i.e. June 23, 2003), 
obtained by historical simulation using full sample data has been 15.4050 %. Thus, if 
the value of the portfolio is Rs. 100 at that day, corresponding capital charge for 10-
days holding period is Rs. 15.4050.   

Table 3: Estimated VaRs and Capital Charges for Two Hypothetical Portfolios 
Variance-Covariance 
 (Normal)  Method 

Historical 
Simulation 

Tail-Index 
(Hill’s Estimator) 

Simple 
(homoscadastic) 

Risk Metric with � 
(conditional heteroscadasctic) 

Portfolio Description of Estimate* Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 
PDs Last day’s VaR (1) 1.2345 0.9234 0.7991 0.5057 0.3367 1.4706 1.2273 1.5106 1.8441 

 60-days’ Average VaR (1) 1.2440 0.9648 1.0749 0.9088 0.7363 1.4762 1.2416 1.5279 1.7133 

 Cap Charge, H=10-days 12.9816 10.0683 11.2167 9.4834 7.6842 15.4050 12.9572 15.6810 23.9852

 Cap Charge, H=30-day s 22.4847 17.4389 19.4279 16.4257 13.3093 26.6822 22.4426 26.9453 48.1874

  

Banks Last day’s VaR  (1) 1.0798 0.8297 0.7274 0.4597 0.3018 1.2860 1.0403 1.3132 1.5052

 
60-days’ Average VaR (1) 1.0880 0.8728 0.9780 0.8287 0.6726 1.2888 1.0702 1.3288 1.6092

 
Cap Charge, H=10-days 11.3539 9.1084 10.2055 8.6479 7.0190 13.4493 11.1684  13.6537 23.6612

 
Cap Charge, H=30-day s 19.6656 15.7762 17.6764 14.9786 12.1572 23.2948 19.3443  23.4748 48.3536

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 

 
The columns in Table 3 and Annexure 1 are self-explanatory. As can be seen therein, 
we estimated VaRs and capital charges for five alternative schemes under normal 
method, one for full sample estimate, one for rolling sample estimate, and three for 
Risk Metric approach corresponding to three alternative decay factors, � = 0.98, 0.96 
and 0.94. Full sample estimates at any day, say t, are derived based on all returns from 
day 1 to t. In the case of rolling sample estimates, we fix the size/length of the rolling 
windows at 500 days5. The columns with titles ‘Full’ and ‘Rolling’ provide estimates 
corresponding to full sample and rolling sample, respectively. As regards to historical 
simulation, we provide both ‘full sample’ and ‘rolling sample’ estimates. Same is the 
case for tail-index (Hill’s estimator) approach. 

                                                 
5 We considered the rolling window size as 500 days though one may like to try with other rolling 
windows like 750, 1000, 1250,1500, etc. This choice, however, is arbitrary, and one may implement a 
systematic strategy to arrive at an optimal window length for which VaR estimates are most accurate. 
The task, however, is tedious and, therefore, we omit such a scheme from our agenda in this paper.   
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5.2. Back Testing for Competing VaR Models  
 
For evaluating performance of competing VaR models, back testing has been carried 
out with the daily returns for last 290 days (covering about a period of one year as 
backtesting observations. Both ‘full sample’ and  ‘rolling sample’ estimates of VaRs are 
assessed. The backtesting strategy adopted for  the case of rolling sample estimates, is 
as follows; estimate 1-day VaR using returns for days 1 to 500 and compare the same 
with the return of the 501-th day, estimate 1-day VaR based on returns on days 2 to 
501 and compare the same with 502-th day’s return, and so on. In the case of full 
sample estimates, VaRs at any day, say t, are estimated based on returns for the days 1 
to t.  
 
As our VaR estimates have probability level 0.01 and the Backtesting trading days 
cover 290 daily returns, expected number of failures for a good VaR model (i.e. the 
number of occasions out of 290 days when actual return is worse than VaR) is 3. In 
Table 4, we report the results of Backtesting for two hypothetical portfolios. Detailed 
bond-wise results of Backtesting are presented in Annexure 2. 
 

Table 4: Results of Back Testing for Two Portfolios 
Variance-Covariance 

(Normal)  Method Historical Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple (homoscadastic) 
Risk Metric with �              

(conditional heteroscadasctic) 
Portfolio Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 

PDs 2 8 7 8 7 2 3 0 0 

Banks 2 8 7 7 7 2 3 2 0 
Note: Number in each cell indicates the number of days (out of 290 backtesting days) when actual loss
exceeds the VaR (with probability level 0.01). For a good VaR model, this number would be close to 3.  
 
As can be seen from Table 4, for the hypothetical portfolios for PDs and Banks, VaR 
models under normality for rolling sample as well as the Risk-Metric approach, 
perform very poorly, as the number of VaR violation is much higher than the expected 
number 3. In case of full sample homoscadastic normality and also for HS approach, 
the failure numbers are closer to 3. The Hill’s tail-index based VaRs, however, are 
relatively more conservative (i.e. higher) and in this case VaR violation takes place in 
at most 2 days (out of 290 days).  
 
The detailed backtesing results for selected GOI bonds (Annexure 2) also reveal the 
similar findings. Number of failures in the case of Hill’s tail-index based VaR model 
never exceed the theoretical number 3. For HS method, VaR estimates are also quite 
good, though for a few cases the VaR violation exceeds 3. The performances of 
normal-based VaR models, generally, are worse. Particularly, for Risk-Metric 
approach, the number of VaR violation is too high for each bond. 
 
6. Concluding Remarks 
 
This paper has experimented with a number of available VaR models, such as, 
variance-covariance/normal (including Risk-Metric approach), historical simulation 
and tail-index based method for estimating VaR for a number of selected GOI bonds 
and representative portfolios of GOI bonds for banks and PDs. Valuation of each bond 
has been done based on the Zero-Coupon Yield Curve compiled by NSE. Empirical 
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results are quite interesting. We found that the VaR models under variance-
covariance/normal approach, particularly the Risk-Metric approach, severely 
underestimate VaR numbers, as is reflected by too many failures (compared to the 
theoretical expected number) in backtesting. Historical simulation approach provides 
quite reasonable VaR estimates. On the other hand the tail-index (Hill’s estimator) 
based VaR estimates are slightly overestimated and as a result the number of failures 
in backtesting is less than the theoretical expectation for each individual bond and 
portfolio.  
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Annexure 1: Estimated VaRs and Capital Charges for Each Selected GOI Bond 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
GOI Bond Description of Estimate* Full  Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 

2004-12.50% Last day’s VaR (1) 0.4805 0.4352 0.3933 0.3209 0.2769 0.6191 0.5638 0.6692 0.5939 

 60-days’ Average VaR (1) 0.4829 0.4630 0.4720 0.4402 0.3976 0.6218 0.5945 0.6760 0.6716 

 Cap Charge, H=10-days 5.0396 4.8313 4.9253 4.5935 4.1495 6.4886 6.2043 6.2648 7.5880 

 Cap Charge, H=30-day s 8.7288 8.3680 8.5308 7.9562 7.1871 11.2387 10.7462 10.2530 13.6590 

           

2005 11.19% Last day’s VaR (1) 0.7018 0.7000 0.6916 0.5578 0.4782 0.9075 0.7583 0.9323 0.8533 

 60-days’ Average VaR (1) 0.7046 0.7416 0.8354 0.7729 0.6929 0.9084 0.7917 0.9425 0.9667 

 Cap Charge, H=10-days 7.3530 7.7389 8.7181 8.0658 7.2311 9.4797 8.2615 9.2884 9.0365 

 Cap Charge, H=30-day s 12.7358 13.4042 15.1001 13.9704 12.5247 16.4192 14.3093 15.6553 14.8626 

           

2006-11.68% Last day’s VaR (1) 0.7345 0.7438 0.7260 0.5788 0.4921 0.9100 0.8265 0.9787 0.9300 

 60-days’ Average VaR (1) 0.7376 0.7969 0.8830 0.8122 0.7241 0.9280 0.8775 0.9825 1.0277 

 Cap Charge, H=10-days 7.6973 8.3159 9.2145 8.4754 7.5565 9.6837 9.1567 10.2046 9.7041 

 Cap Charge, H=30-day s 13.3321 14.4036 15.9600 14.6798 13.0883 16.7727 15.8598 17.6352 16.0341 

           

2007 11.90% Last day’s VaR (1) 0.7851 0.7725 0.7228 0.5590 0.4642 0.9569 0.9804 0.9964 1.0556 

 60-days’ Average VaR (1) 0.7891 0.8379 0.8938 0.8115 0.7147 0.9655 1.1418 1.0216 1.2236 

 Cap Charge, H=10-days 8.2350 8.7434 9.3268 8.4685 7.4577 10.0754 11.9151 11.3174 13.2033 

 Cap Charge, H=30-day s 14.2634 15.1440 16.1546 14.6679 12.9172 17.4510 20.6375 20.1713 23.2780 

    

2008 11.50% Last day’s VaR (1) 1.5098 1.0460 0.8868 0.5772 0.4018 1.7581 1.3866 1.8519 1.63598 

 60-days’ Average VaR (1) 1.5213 1.0853 1.1828 1.0093 0.8313 1.7593 1.4336 1.8527 1.7799 

 Cap Charge, H=10-days 15.8752 11.3260 12.3429 10.5321 8.6753 18.3587 14.9603 19.9154 22.1639 

 Cap Charge, H=30-day s 27.4967 19.6173 21.3785 18.2421 15.0261 31.7982 25.9120 34.9874 41.7688 

           

2008 12% Last day’s VaR (1) 1.1617 0.9028 0.7357 0.4949 0.3552 1.2491 0.9901 1.0252 1.0297 

 60-days’ Average VaR (1) 1.1702 0.9561 0.9676 0.8372 0.7014 1.2537 1.1248 1.0396 1.1302 

 Cap Charge, H=10-days 12.2117 9.9769 10.0969 8.7363 7.3197 13.0831 11.7375 10.8435 10.3659 

 Cap Charge, H=30-day s 21.1513 17.2805 17.4884 15.1317 12.6780 22.6606 20.3300 18.7765 16.8863 

           

2009 6.96% Last day’s VaR (1) 1.0085 0.8791 0.7182 0.5149 0.3975 1.3016 1.0183 1.2017 1.1733 

 60-days’ Average VaR (1) 1.0154 0.9494 0.9204 0.8139 0.6985 1.3043 1.2575 1.2238 1.2759 

 Cap Charge, H=10-days 10.5958 9.9075 9.6050 8.4938 7.2888 13.6110 13.1222 13.3388 11.9482 

 Cap Charge, H=30-day s 18.3524 17.1603 16.6364 14.7117 12.6246 23.5749 22.7284 23.5891 19.6706 

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 
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Annexure 1: Estimated VaRs and Capital Charges for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
GOI Bond Description of Estimate* Full  Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 

2009-11.99% Last day’s VaR (1) 0.9233 0.8236 0.6937 0.5008 0.3898 1.1904 0.9995 1.12458 1.16083 

 60-days’ Average VaR (1) 0.9294 0.8892 0.8863 0.7850 0.6745 1.2232 1.2350 1.11883 1.19739 

 Cap Charge, H=10-days 9.6989 9.2797 9.2491 8.1922 7.0386 12.7651 12.8875 12.17661 11.26291 

 Cap Charge, H=30-day s 16.7991 16.0729 16.0200 14.1893 12.1913 22.1098 22.3219 21.51798 18.57515 

           

2010 6.20% Last day’s VaR (1) 1.1350 0.9335 0.7364 0.5132 0.3837 1.3014 1.0717 1.30988 1.18174 

 60-days’ Average VaR (1) 1.1431 0.9998 0.9550 0.8370 0.7119 1.3079 1.1709 1.31913 1.31137 

 Cap Charge, H=10-days 11.9291 10.4330 9.9660 8.7346 7.4293 13.6481 12.2191 13.45170 11.90420 

 Cap Charge, H=30-day s 20.6617 18.0706 17.2616 15.1287 12.8680 23.6393 21.1641 23.04426 19.30165 

           

2010 7.55% Last day’s VaR (1) 1.1282 0.9210 0.7307 0.5059 0.3755 1.3086 1.0438 1.29667 1.17738 

 60-days’ Average VaR (1) 1.1363 0.9842 0.9501 0.8307 0.7046 1.3104 1.1614 1.30931 1.27918 

 Cap Charge, H=10-days 11.8578 10.2704 9.9152 8.6689 7.3529 13.6744 12.1203 13.04730 11.56002 

 Cap Charge, H=30-day s 20.5383 17.7889 17.1737 15.0150 12.7356 23.6847 20.9929 22.10749 18.69852 

           

2011 9.39% Last day’s VaR (1) 1.2011 0.9314 0.7491 0.5070 0.3666 1.2622 1.0148 1.37506 1.32403 

 60-days’ Average VaR (1) 1.2099 0.9866 0.9830 0.8525 0.7167 1.2703 1.1439 1.38566 1.26197 

 Cap Charge, H=10-days 12.6262 10.2960 10.2577 8.8965 7.4787 13.2566 11.9372 14.05360 10.81599 

 Cap Charge, H=30-day s 21.8692 17.8332 17.7669 15.4092 12.9535 22.9611 20.6759 24.01261 17.07628 

    

2011A 11.50% Last day’s VaR (1) 1.1829 0.9122 0.7431 0.4993 0.3578 1.2604 1.0048 1.37483 1.28499 

 60-days’ Average VaR (1) 1.1916 0.9650 0.9779 0.8457 0.7083 1.2632 1.1466 1.39295 1.28714 

 Cap Charge, H=10-days 12.4349 10.0702 10.2045 8.8256 7.3918 13.1823 11.9653 14.59451 11.80419 

 Cap Charge, H=30-day s 21.5378 17.4421 17.6746 15.2864 12.8030 22.8324 20.7244 25.32687 19.23314 

           

2012 6.85% Last day’s VaR (1) 1.3908 1.0162 0.8216 0.5534 0.3990 1.4314 1.1483 1.58557 1.43951 

 60-days’ Average VaR (1) 1.4012 1.0668 1.0809 0.9354 0.7852 1.4325 1.2144 1.59764 1.48996 

 Cap Charge, H=10-days 14.6217 11.1327 11.2796 9.7616 8.1942 14.9488 12.6727 15.90033 14.68881 

 Cap Charge, H=30-day s 25.3256 19.2824 19.5368 16.9076 14.1928 25.8921 21.9498 26.92439 24.76522 

           

2012 7.40% Last day’s VaR (1) 1.3733 1.0050 0.8153 0.5480 0.3940 1.4136 1.1407 1.56565 1.39213 

 60-days’ Average VaR (1) 1.3835 1.0551 1.0735 0.9283 0.7784 1.4162 1.2168 1.58020 1.48224 

 Cap Charge, H=10-days 14.4374 11.0107 11.2025 9.6874 8.1230 14.7793 12.6982 15.83250 14.95836 

 Cap Charge, H=30-day s 25.0064 19.0711 19.4032 16.7790 14.0695 25.5985 21.9939 26.89545 25.49986 

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 
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Annexure 1: Estimated VaRs and Capital Charges for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
GOI Bond Description of Estimate* Full  Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 

2012-11.03% Last day’s VaR (1) 1.2594 0.9401 0.7728 0.5150 0.3658 1.3184 1.0687 1.46683 1.34810 

 60-days’ Average VaR (1) 1.2687 0.9894 1.0204 0.8798 0.7344 1.3280 1.1511 1.48697 1.41105 

 Cap Charge, H=10-days 13.2401 10.3253 10.6487 9.1816 7.6637 13.8580 12.0128 15.53409 14.70652 

 Cap Charge, H=30-day s 22.9324 17.8840 18.4440 15.9029 13.2739 24.0028 20.8069 26.92002 25.46586 

           

2013-7.27% Last day’s VaR (1) 1.5390 1.0680 0.8893 0.5928 0.4244 1.6707 1.3337 1.86668 1.70292 

 60-days’ Average VaR (1) 1.5506 1.1107 1.1758 1.0123 0.8445 1.6781 1.3655 1.81013 1.56160 

 Cap Charge, H=10-days 16.1809 11.5910 12.2699 10.5634 8.8129 17.5119 14.2497 18.57984 15.28507 

 Cap Charge, H=30-day s 28.0261 20.0763 21.2520 18.2963 15.2645 30.3314 24.6811 31.93050 25.73298 

           

2013 9.81% Last day’s VaR (1) 1.3878 0.9934 0.8273 0.5480 0.3878 1.4767 1.2067 1.63045 1.40350 

 60-days’ Average VaR (1) 1.3983 1.0384 1.0954 0.9418 0.7838 1.4778 1.2848 1.66865 1.45674 

 Cap Charge, H=10-days 14.5918 10.8357 11.4314 9.8286 8.1789 15.4213 13.4075 17.54048 14.33306 

 Cap Charge, H=30-day s 25.2738 18.7680 19.7998 17.0236 14.1663 26.7105 23.2225 30.48686 24.21780 

    

2014 6.72% Last day’s VaR (1) 1.4332 1.0321 0.8396 0.5647 0.4070 1.4765 1.1930 1.65868 1.45711 

 60-days’ Average VaR (1) 1.4439 1.0808 1.1054 0.9559 0.8018 1.4920 1.2343 1.67298 1.49680 

 Cap Charge, H=10-days 15.0679 11.2789 11.5351 9.9750 8.3670 15.5700 12.8806 17.50132 14.69251 

 Cap Charge, H=30-day s 26.0984 19.5356 19.9794 17.2771 14.4921 26.9681 22.3098 30.34875 24.75312 

           

2014 7.37% Last day’s VaR (1) 1.0960 2.2546 0.9194 0.6104 0.4362 1.8353 1.4095 1.92464 1.73926 

 60-days’ Average VaR (1) 1.1362 2.2722 1.2178 1.0462 0.8705 1.8383 1.4277 1.95134 1.67170 

 Cap Charge, H=10-days 11.8564 23.7121 12.7081 10.9173 9.0841 19.1838 14.8983 21.66495 17.37143 

 Cap Charge, H=30-day s 20.5359 41.0705 22.0111 18.9094 15.7341 33.2273 25.8046 38.65079 30.11794 

           

2015 9.85% Last day’s VaR (1) 1.6161 1.1038 0.9322 0.6080 0.4263 1.9010 1.4886 1.97999 1.73134 

 60-days’ Average VaR (1) 1.6284 1.1414 1.2431 1.0603 0.8734 1.9053 1.5156 1.97608 1.71742 

 Cap Charge, H=10-days 16.9936 11.9106 12.9720 11.0647 9.1143 19.8832 15.8163 20.73941 18.38116 

 Cap Charge, H=30-day s 29.4337 20.6297 22.4682 19.1646 15.7865 34.4387 27.3947 36.02016 32.23363 

    

2015 10.47% Last day’s VaR (1) 1.5256 1.0540 0.8921 0.5831 0.4082 1.7639 1.3883 1.86069 1.77378 

 60-days’ Average VaR (1) 1.5372 1.0934 1.1880 1.0152 0.8381 1.7679 1.4357 1.87827 1.80238 

 Cap Charge, H=10-days 16.0414 11.4106 12.3979 10.5942 8.7456 18.4487 14.9827 20.71056 21.62626 

 Cap Charge, H=30-day s 27.7845 19.7638 21.4738 18.3498 15.1479 31.9540 25.9507 36.82918 40.08962 

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 
 
 
 
 



 21

Annexure 1: Estimated VaRs and Capital Charges for Each Selected GOI Bond (Contd.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
GOI Bond Description of Estimate* Full  Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 

2016 10.71% Last day’s VaR (1) 1.6206 1.1098 0.9362 0.6076 0.4238 1.9180 1.5120 1.95581 1.76379 

 60-days’ Average VaR (1) 1.6330 1.1470 1.2507 1.0646 0.8744 1.9260 1.5507 1.97107 1.69514 

 Cap Charge, H=10-days 17.0417 11.9694 13.0518 11.1099 9.1244 20.0985 16.1821 20.14285 17.63634 

 Cap Charge, H=30-day s 29.5170 20.7316 22.6064 19.2429 15.8039 34.8116 28.0282 34.54158 30.52388 

           

2017 7.46% Last day’s VaR (1) 1.9371 1.3094 1.0697 0.6997 0.5012 2.4963 1.7607 2.41831 1.98706 

 60-days’ Average VaR (1) 1.9520 1.3434 1.4272 1.2124 0.9952 2.4995 1.7620 2.43472 2.02590 

 Cap Charge, H=10-days 20.3705 14.0189 14.8940 12.6525 10.3858 26.0834 18.3874 25.25757 21.56280 

 Cap Charge, H=30-day s 35.2828 24.2814 25.7971 21.9147 17.9888 45.1778 31.8479 43.62410 37.71066 

           

2017 8.07% Last day’s VaR (1) 1.8341 1.2376 1.0255 0.6699 0.4760 2.2716 1.6790 2.22722 1.75649 

 60-days’ Average VaR (1) 1.8481 1.2723 1.3684 1.1641 0.9567 2.2837 1.7044 2.25350 1.84146 

 Cap Charge, H=10-days 19.2862 13.2776 14.2797 12.1485 9.9841 23.8318 17.7863 22.27434 18.51916 

 Cap Charge, H=30-day s 33.4047 22.9974 24.7331 21.0418 17.2930 41.2778 30.8067 37.59434 31.52357 

    

2018 6.25% Last day’s VaR (1) 2.0853 1.4057 1.1294 0.7439 0.5409 2.7461 1.8666 2.60423 2.10819 

 60-days’ Average VaR (1) 2.1013 1.4389 1.5041 1.2779 1.0505 2.7600 1.8753 2.63395 2.13650 

 Cap Charge, H=10-days 21.9281 15.0158 15.6963 13.3357 10.9629 28.8018 19.5695 27.41268 21.72406 

 Cap Charge, H=30-day s 37.9806 26.0082 27.1868 23.0982 18.9882 49.8861 33.8954 47.41984 37.16716 

           

2019 10.03% Last day’s VaR (1) 1.9087 1.3409 1.0760 0.7012 0.5048 2.4961 1.8509 2.39103 2.03259 

 60-days’ Average VaR (1) 1.9234 1.3746 1.4378 1.2153 0.9914 2.5044 1.8601 2.42206 1.98226 

 Cap Charge, H=10-days 20.0715 14.3452 15.0044 12.6821 10.3454 26.1347 19.4109 24.84974 19.61311 

 Cap Charge, H=30-day s 34.7649 24.8466 25.9884 21.9660 17.9187 45.2665 33.6206 42.69381 33.12515 

           

2020 10.70% Last day’s VaR (1) 1.9196 1.3666 1.0899 0.7133 0.5186 2.4958 1.8752 2.45343 1.91994 

 60-days’ Average VaR (1) 1.9343 1.4001 1.4544 1.2286 1.0022 2.5128 1.8869 2.46666 1.99694 

 Cap Charge, H=10-days 20.1854 14.6103 15.1779 12.8211 10.4581 26.2228 19.6906 26.06636 19.47205 

 Cap Charge, H=30-day s 34.9621 25.3057 26.2889 22.2068 18.1140 45.4192 34.1052 45.42003 32.66079 

    

2022 8.35% Last day’s VaR (1) 2.1897 1.6404 1.2642 0.8708 0.6865 2.8581 2.1118 2.82782 2.43702 

 60-days’ Average VaR (1) 2.2061 1.6706 1.6570 1.4058 1.1615 2.8841 2.1118 2.85296 2.55708 

 Cap Charge, H=10-days 23.0217 17.4340 17.2912 14.6699 12.1211 30.0973 22.0379 29.48916 28.80464 

 Cap Charge, H=30-day s 39.8747 30.1965 29.9492 25.4089 20.9944 52.1301 38.1708 50.84461 51.75369 

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 
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Annexure 1: Estimated VaRs and Capital Charges for Each Selected GOI Bond (Concld.) 

Normal Method 
Historical 

Simulation 
Tail-Index 

(Hill’s Estimator) 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
GOI Bond Description of Estimate* Full Rolling 0.98 0.96 0.94 Full  Rolling Full Rolling 
2023 6.30% Last day’s VaR (1) 2.4447 1.8962 1.4380 1.0347 0.8588 3.2206 2.3300 3.20569 3.09765 

 60-days’ Average VaR (1) 2.4624 1.9238 1.8516 1.5807 1.3236 3.2751 2.3300 3.23842 2.92292 

 Cap Charge, H=10-days 25.6968 20.0763 19.3222 16.4952 13.8124 34.1773 24.3152 33.53046 31.03540 

 Cap Charge, H=30-day s 44.5081 34.7732 33.4670 28.5705 23.9238 59.1969 42.1152 57.86030 54.41294 

           

2026 10.18% Last day’s VaR (1) 2.2651 1.8815 1.5211 1.1600 1.0111 2.9036 2.4249 2.98585 2.89859 

 60-days’ Average VaR (1) 2.2802 1.9018 1.9048 1.6485 1.4065 2.9191 2.4249 3.01020 2.74671 

 Cap Charge, H=10-days 23.7951 19.8464 19.8772 17.2028 14.6771 30.4623 25.3047 31.14444 27.26564 

 Cap Charge, H=30-day s 41.2144 34.3749 34.4283 29.7961 25.4215 52.7622 43.8290 53.72337 46.24050 

           

2032 7.95% Last day’s VaR (1) 2.5788 2.5197 2.3594 2.0570 1.9490 3.4786 2.8300 3.48599 3.43732 

 60-days’ Average VaR (1) 2.5880 2.5067 2.7118 2.4465 2.1937 3.5009 2.8300 3.53876 3.63368 

 Cap Charge, H=10-days 27.0070 26.1588 28.2995 25.5304 22.8921 36.5333 29.5330 37.95843 36.42364 

 Cap Charge, H=30-day s 46.7775 45.3084 49.0163 44.2199 39.6503 63.2776 51.1527 66.61620 62.01635 

Note: ‘*’ VaR(1) represents VaR for holding period 1-day and H denotes holding period. 
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Annexure 2: Results of Backtesting for Selected GOI Bonds 
Normal Method 

Simple 
(Homoscadastic) 

Risk-Metric with �  
(Conditional 

Heteroscedastic) 
Historical 

Simulation 
Tail_Index  

Hill’s Estimate) 
GOI Bond Full Rolling 0.98 0.96 0.94 Full Rolling Full Rolling 

2004-12.50% 3 3 6 5 5 1 2 1 1 

2005 11.19% 4 4 6 7 6 2 3 2 2 

2006-11.68% 4 3 6 6 6 2 2 2 2 

2007 11.90% 4 4 7 8 6 2 2 2 2 

2008 11.50% 2 7 6 6 6 0 3 0 1 

2008 12% 2 4 6 5 6 1 2 2 2 

2009 6.96% 2 3 6 5 4 1 1 1 1 

2009-11.99% 3 3 6 5 5 1 1 1 1 

2010 6.20% 1 3 5 6 5 0 1 0 1 

2010 7.55% 1 3 5 6 6 0 1 0 1 

2011 9.39% 1 3 5 5 6 0 2 0 1 

2011A 11.50% 2 4 6 6 6 0 2 0 2 

2012 6.85% 1 6 6 6 6 0 3 0 1 

2012 7.40% 1 6 6 6 6 0 3 0 1 

2012 - 11.03% 2 6 6 6 7 0 2 0 2 

2013-7.27% 1 6 6 6 7 0 3 0 2 

2013 9.81% 1 6 6 6 7 0 3 0 1 

2014 6.72% 1 6 6 6 6 0 3 0 1 

2014 7.37% 0 7 6 5 6 0 2 0 2 

2015 9.85% 2 8 6 6 5 0 3 0 3 

2015 10.47% 2 7 6 6 5 0 3 0 2 

2016 10.71% 2 7 6 6 6 0 3 0 2 

2017 7.46% 2 7 7 6 4 0 3 0 2 

2017 8.07% 2 8 7 6 4 0 2 0 2 

2018 6.25% 2 6 7 6 4 0 2 0 2 

2019 10.03% 2 8 7 6 5 0 2 0 2 

2020 10.70% 2 8 7 6 7 0 3 0 1 

2022 8.35% 2 7 8 8 7 0 2 0 2 

2023 6.30% 2 7 7 7 6 0 2 0 1 

2026 10.18% 4 7 8 5 5 0 4 0 1 

2032 7.95% 8 9 8 7 3 2 4 2 2 
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